• Title/Summary/Keyword: 실시간 위치추정 시스템

Search Result 163, Processing Time 0.03 seconds

3D Facial Animation with Head Motion Estimation and Facial Expression Cloning (얼굴 모션 추정과 표정 복제에 의한 3차원 얼굴 애니메이션)

  • Kwon, Oh-Ryun;Chun, Jun-Chul
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.311-320
    • /
    • 2007
  • This paper presents vision-based 3D facial expression animation technique and system which provide the robust 3D head pose estimation and real-time facial expression control. Many researches of 3D face animation have been done for the facial expression control itself rather than focusing on 3D head motion tracking. However, the head motion tracking is one of critical issues to be solved for developing realistic facial animation. In this research, we developed an integrated animation system that includes 3D head motion tracking and facial expression control at the same time. The proposed system consists of three major phases: face detection, 3D head motion tracking, and facial expression control. For face detection, with the non-parametric HT skin color model and template matching, we can detect the facial region efficiently from video frame. For 3D head motion tracking, we exploit the cylindrical head model that is projected to the initial head motion template. Given an initial reference template of the face image and the corresponding head motion, the cylindrical head model is created and the foil head motion is traced based on the optical flow method. For the facial expression cloning we utilize the feature-based method, The major facial feature points are detected by the geometry of information of the face with template matching and traced by optical flow. Since the locations of varying feature points are composed of head motion and facial expression information, the animation parameters which describe the variation of the facial features are acquired from geometrically transformed frontal head pose image. Finally, the facial expression cloning is done by two fitting process. The control points of the 3D model are varied applying the animation parameters to the face model, and the non-feature points around the control points are changed by use of Radial Basis Function(RBF). From the experiment, we can prove that the developed vision-based animation system can create realistic facial animation with robust head pose estimation and facial variation from input video image.

Observation and Analysis of Movement Characteristics of Drifting Ships (표류선박 거동특성 관측 및 분석)

  • Lee Moonjin;Kang Chang-gu;Yun Jong-hwui
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • The movement of drifting ships on the sea is closely related to marine environmental forces such as waves, currents, winds, etc. To develop a prediction model for trajectories oi drifting ships, an experiment on the movement of drifting ships was carried out in the Southeastern Sea of Korea. Five types of ships including a lire raft and tour ships with G/T 10tons, G/T 2o tons, G/T 50 tons, and G/T 80 tons, were considered in the experiment. The G/T 50 ton class ship was used as a base ship for obtaining the currents, winds and heading angles of ship following the trajectory. The trajectory of each ship was measured by DGPS(Differential Global Positioning System) and collected using APRS(Automatic Position Reporting System) installed on the base ship. The error range in position fix of DGPS are approximately ±1 m. The drift speed of ship in the experiment was between 3% to 5% of wind speed and drift direction of ship was deflected by ±90° from wind direction. Also, the heading of drifting ship was normal to wind direction.

  • PDF

An Efficient Analysis Method of Multiple View Images for Motion Capture (모션 캡쳐를 위한 다시점 영상의 효율적인 분석법)

  • Seo, Yung-Ho;Park, You-Shin;Koo, Ddeo-Ol-Ra;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.44-56
    • /
    • 2008
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.

Autonomous Surveillance-tracking System for Workers Monitoring (작업자 모니터링을 위한 자동 감시추적 시스템)

  • Ko, Jung-Hwan;Lee, Jung-Suk;An, Young-Hwan
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.38-46
    • /
    • 2010
  • In this paper, an autonomous surveillance-tracking system for Workers monitoring basing on the stereo vision scheme is proposed. That is, analysing the characteristics of the cross-axis camera system through some experiments, a optimized stereo vision system is constructed and using this system an intelligent worker surveillance-tracking system is implemented, in which a target worker moving through the environments can be detected and tracked, and its resultant stereo location coordinates and moving trajectory in the world space also can be extracted. From some experiments on moving target surveillance-tracking, it is analyzed that the target's center location after being tracked is kept to be very low error ratio of 1.82%, 1.11% on average in the horizontal and vertical directions, respectively. And, the error ratio between the calculation and measurement values of the 3D location coordinates of the target person is found to be very low value of 2.5% for the test scenario on average. Accordingly, in this paper, a possibility of practical implementation of the intelligent stereo surveillance system for real-time tracking of a target worker moving through the environments and robust detection of the target's 3D location coordinates and moving trajectory in the real world is finally suggested.

A Study on The Actual Application of the Least Order Load Observer and Effective Online Inertia Identification Algorithm for High Performance Linear Motor Positioning System (고성능 선형전동기 위치제어 시스템에 대한 최소차원 부하관측기의 실제적 구현 및 이를 이용한 실시간 관성추정기의 구현)

  • Kim, Joohn-Sheok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.730-738
    • /
    • 2007
  • As well known when the linear machine is operated between two points repeatedly under positioning control, there are various positioning error at the moment of zero speed owing to the non-linear disturbance like as unpredictable friction force. To remove this positioning error, a simple least order disturbance observer is introduced and is actually implemented in this study. Due to this simple algorithm the over-all machine system can be modified to simple arbitrary given one-mass load without any disturbance. So, the total construction process for positioning control system is much easier than old one. Moreover, to generate a proper effective position profile with the limited actual machine force, a very powerful on-line mass identification algorithm using the load force estimator is presented. In the proposed mass identification algorithm, the exact load mass can be calculated during only one moving stage under a normally generated position profile. All presented algorithm is verified with experimental result with commercial linear servo machine system.

Improvement of Bipolar Magnetic Guidance Sensor Performance using Fuzzy Inference System (양극성 자기유도센서의 성능 향상을 위한 퍼지 추론 시스템)

  • Park, Moonho;Cho, Hyunhak;Kim, Kwangbaek;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • Most of light duty AGVs(AGCs) using tape of magnetic for the guide path have digital guidance magnetic sensor. Digital guidance magnetic sensor using magnet-tape is on/off type and has positioning error of magnet-tape as 10~50 mm. AGC using this sensor doesn't induce accurate position of magnet-line which is magnet-tape because of magnetic field which motor in AGC creates, outer magnetic field, earth's magnetic field, etc. AGC when driving wobbles due to this error and this error can cause path deviation. In this paper, we propose fuzzy inference system for improvement of bipolar analog magnetic guidance sensor performance. Fuzzy is suitable in term of fault tolerance, uncertainty tolerance, real-time operation, and Nonlinearity as compared with other algorithms. In previous research, we produced bipolar magnetic guidance sensor and we set the threshold in order to calculate digital values of magnet position. Fuzzy inference system is designed using outputs of Analog hall sensors. Magnet position calculated by digital method is improved by outputs of this system. In result, proposed method was verified by improving performance of magnetic guidance sensor.

Development of Legibility Distance Model for VMS Messages using In-Vehicle DGPS Data (DGPS를 이용한 VMS 메시지 판독거리 모형개발)

  • O, Cheol;Kim, Won-Gi;Lee, Su-Beom;Lee, Cheong-Won;Kim, Jeong-Wan
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.23-32
    • /
    • 2007
  • Variable message sign (VMS), which is used for providing real-time information on traffic conditions and incidents, is one of the important components of intelligent transportation systems. VMS messages need to meet the requirements with the consideration of human factors that messages should be readable and understandable while driving. This study developed a legibility distance model for VMS messages using in-vehicle differential global positioning data (DGPS). Traffic conditions, highway geometric conditions, and VMS message characteristics were investigated for establishing the legibility model based on multiple linear regression analysis. The height of VMS characters, speed, and the number of lanes were identified as dominant factors affecting the variation of legibility distances. It is expected that the proposed model would play a significant role in designing VMS messages for providing more effective real-time traffic information.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

Development of a Békésy Audiometry System based on PC (PC 기반의 Békésy 청력검사 시스템 개발)

  • Kang, Deok-Hun;Song, Bok-Deuk;Shin, Bum-Joo;Kim, Jin-Dong;Wang, Soo-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.77-84
    • /
    • 2011
  • The B$\'{e}$k$\'{e}$syaudiometry makes possible to determine not only hearing threshold but also assumption of recruit phenomenon. Additionally, it is helpful to investigate cause of hearing loss. In this paper, we describe a development of PC based B$\'{e}$k$\'{e}$syaudiometer which complies with ANSI standards and provides cost competitiveness. It dynamically produces sound having required frequency and sound pressure level and supports audiogram interface showing test result at realtime. To provide ANSI defined maximum sound level, an amplifier has been developed. We have been verified our system whether it conforms to ANSI standards.

A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation (일사량 변화에 다른 전력손실을 고려한 새로운 태양광 추적 시스템 제어)

  • Park, Ki-Tae;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper proposes a novel tacking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV hacking system. The tracking system of sensor method used in a conventional PV power station is unable to exactly track a sun position when lacking in the intensity of radiation and has the problem is malfunction of tracking system by a rapidly changing climatic. The tracking system of program method spends too much energy on the unnecessary operation of tracking system because that is unable to adapt itself to a outside factor of climatic environment. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this pap proposes a novel control algorithm of the tracking system. Also, this paper is analyzed efficiency of traditional solar tracking method and proposed method, prove validity of proposed algorithm through demonstrable study.