• Title/Summary/Keyword: 실시간 감시 시스템

Search Result 916, Processing Time 0.036 seconds

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.

A study on vulnerability analysis and incident response methodology based on the penetration test of the power plant's main control systems (발전소 주제어시스템 모의해킹을 통한 취약점 분석 및 침해사고 대응기법 연구)

  • Ko, Ho-Jun;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.2
    • /
    • pp.295-310
    • /
    • 2014
  • DCS (Distributed Control System), the main control system of power plants, is an automated system for enhancing operational efficiency by monitoring, tuning and real-time operation. DCS is becoming more intelligent and open systems as Information technology are evolving. In addition, there are a large amount of investment to enable proactive facility management, maintenance and risk management through the predictive diagnostics. However, new upcoming weaponized malware, such as Stuxnet designed for disrupting industrial control system(ICS), become new threat to the main control system of the power plant. Even though these systems are not connected with any other outside network. The main control systems used in the power plant usually have been used for more than 10 years. Also, this system requires the extremely high availability (rapid recovery and low failure frequency). Therefore, installing updates including security patches is not easy. Even more, in some cases, installing security updates can break the warranty by the vendor's policy. If DCS is exposed a potential vulnerability, serious concerns are to be expected. In this paper, we conduct the penetration test by using NESSUS, a general-purpose vulnerability scanner under the simulated environment configured with the Ovation version 1.5. From this result, we suggest a log analysis method to detect the security infringement and react the incident effectively.

Model-Based Approach to Flight Test System Development to Cope with Demand for Simultaneous Guided Missile Flight Tests (동시다발적인 유도무기 비행시험 수요에 대응하기 위한 모델기반 비행시험 시스템 개발)

  • Park, Woong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.268-277
    • /
    • 2019
  • Flight test systems should monitor various conditions in real time during flight tests and take safety measures in an emergency. The importance of ensuring test safety increases in more complicated and wider test environments. Also, due to the transition of wartime operational authority, many guided missile systems must be developed simultaneously. Early deployment and budget reduction by shortening the development and T&E periods are also necessary. Consequently, the risk of flight tests under the circumstance of inefficient test resources is increasing. To address this deficiency, a flight test system model using SysML was proposed in this study. The method of designing and verifying the test system is based on the agile shift left testing methodology of advanced T&E labs and utilizing a system reference model in the aerospace field. Through modeling and simulation analysis, early identification and correction of faults resulting from inconsistent test requirements can mitigate the risk of delays during the T&E phase of flight tests. Also, because the flight test system model was constructed using SysML, it can be applied to test various guided missile systems.

Zone based on Wireless Sensor Network Management Protocol for Smart Home (스마트 홈을 위한 영역기반 무선 센서네트워크 관리 프로토콜)

  • Kim, Gang-Seok;Huh, Jee-Wan;Song, Wang-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.65-71
    • /
    • 2009
  • As a core area of the new computing paradigm, the Ubiquitous Sensor Network Technology utilizes a wireless sensor networking which can be applied to the Context Information Monitoring System. When the technology is used in a poor user-environment for monitoring purposes, it can cost-effectively gather the context data on real-time basis, analyze the information gathered, effectively response to the user situation, and execute orders to create environmental factors desired by the user. This study structures a system able to monitor information in regards to a user-environment based on wireless-node sensor technology coupled with the Ubiquitous Sensor Network Technology. In this paper, the protocol in which it manages the wireless sensor network as the zone based by using the management protocol standardized at the smart home with a profile is proposed. The proposed system requires a minimal collection of data without continuous monitoring. Monitoring periodically, it can sense the user-environment more efficiently than the existing monitoring technologies based on the wire-communication technology.

  • PDF

Online Monitoring System based notifications on Mobile devices with Kinect V2 (키넥트와 모바일 장치 알림 기반 온라인 모니터링 시스템)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1183-1188
    • /
    • 2016
  • Kinect sensor version 2 is a kind of camera released by Microsoft as a computer vision and a natural user interface for game consoles like Xbox one. It allows acquiring color images, depth images, audio input and skeletal data with a high frame rate. In this paper, using depth image, we present a surveillance system of a certain area within Kinect's field of view. With computer vision library(Emgu CV), if an object is detected in the target area, it is tracked and kinect camera takes RGB image to send it in database server. Therefore, a mobile application on android platform was developed in order to notify the user that Kinect has sensed strange motion in the target region and display the RGB image of the scene. User gets the notification in real-time to react in the best way in the case of valuable things in monitored area or other cases related to a reserved zone.

Development of Fault Prediction System Using Peak-code Method in Power Plants (피크코드 기법을 이용한 발전설비 고장예측 시스템 개발)

  • Roh, Chang-Su;Do, Sung-Chan;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • The facilities with new technologies in the recent power plants become larger and need a lot of high cost for maintenance due to stop operations and accidents from the operating machines. Therefore, it claims new systems to monitor the operating status and predict the faults of the machines. This research classifies the normal/abnormal status of the machines into 5 levels which are normal-level/abnormal-level/care-level/dangerous-level/fault and develops the new system that predicts faults without stop operation in power plants. We propose the regional segmentation technique in the frequency domain from the data of the operating machines and generate the Peak-codes similar to the Bar-codes, The high efficient and economic operations of the power plants will be achieved by carrying out the pre-maintenance at the care level of 5 levels in the plants. In order to be utilized easily at power plants, we developed the algorithm appling to a notebook computer from signal acquisition to the discrimination.

  • PDF

춘.추분 시기 천리안위성에 미치는 태양 영향

  • Kim, Jae-Gwan;Lee, Byeong-Il;Park, Yeong-Won;Son, Seung-Hui
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.94.1-94.1
    • /
    • 2012
  • 천리안위성은 우리나라 최초의 정지궤도복합위성(COMS: Communication, Ocean, and Meteorological Satellite)으로 2010년 6월 27일, 남미 기아나 쿠루기지에서 아리안-5 로켓에 의해 발사된 후 동경 128.2도, 적도 상공 약 35,800 km 고도의 정지궤도에 안착되었다. 이 후 궤도상시험 기간과 안정화 기간을 거쳐 2011년 4월 1일, 기상청은 위성자료 서비스를 시작하였다. 천리안위성의 기상영상기는 한반도 주변의 기상변화와 전 지구적 기후 변화 및 대기 운동을 감시하기 위해 실시간 관측 및 전송 시스템을 갖춘 탑재체이다. 이 기상영상기는 하루 8번의 지구 반면 영역과 각각 80번 내외의 북반구 및 한반도 영역을 관측하며, 이 자료는 지상에서 복사보정과 기하보정을 거친 후 위성을 통해 다시 사용자에게 배포된다. 천리안위성 기상영상기는 쉼 없이 관측하고, 일정 시간 이내에 그 자료를 배포해야 한다. 이러한 자료서비스는 운영시스템의 장애나 자연현상에 의한 자료 미수신 혹은 미처리가 발생할 경우 운영 결과 및 성과에 영향을 미친다. 이와 같은 장애에 대비해 국가기상위성센터는 이중화된 시스템을 구축했으며, 자료 백업 부기관으로서 한국항공우주연구원과의 사이트 이중화도 시행하고 있다. 그러나 정지궤도에 있는 위성과 태양 및 지구의 역학적인 관계에 따라 태양 전파 잡음의 영향인 태양간섭과, 위성 태양전지판 충전 장애를 일으킬 수 있는 위성식, 그리고 위성 자정 주변에 발생할 수 있는 태양광 침입 및 산란광 영향 등은 미리 예측되어야 하며, 이 시기 운영 방안 마련과 사용자 공지 등의 조치가 수반되어야 한다. 국가기상위성센터는 춘 추분 시기에 발생하는 이러한 태양 영향을 예측하고 검증했으며, 이 시기 위성 및 지상국의 효율적인 운영방안을 마련하였다.

  • PDF

Distributed Power Saving Control System Using Mobile Agent Based Active Rules (이동에이전트 기반 능동규칙을 이용한 분산형 절전제어시스템)

  • Lee, Yonsik;Jang, Minseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.153-159
    • /
    • 2014
  • In this paper, we propose the Distributed Power Saving Control System that enables the active and intelligent control(on/off and/or dimming control) of the lightning device using sensors and mobile agents. The proposed system is effective for energy saving and induces cost reductions in design and development of power saving control system as adding remote-monitoring or controlling functions is easier with the application of a variety of active rules. Moreover, the system improves the effectiveness of the acquired sensing data by real-time event handling and device controlling using a mobile agent based sensor network middleware that regularize the contextual information or a user's emotion. The results of this paper present the potential applicability of the proposed distributed control system using mobile agent in various active sensor network applications.

달을 이용한 천리안위성 기상영상기 노화 경향 분석

  • Kim, Jae-Gwan;Lee, Byeong-Il;Kim, Yong-Seok;Son, Seung-Hui
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.211.2-211.2
    • /
    • 2012
  • 천리안위성은 통신, 해양, 기상 임무를 띤 우리나라 최초의 정지궤도복합위성으로 지난 2010년 6월 27일 성공적으로 발사된 후 동경 128.2도, 적도 상공 약 35,800 km 고도의 정지궤도에 안착되었다. 이 후 약 6개월 여의 궤도상시험 기간과 2개월의 안정화 기간을 거쳐 2011년 4월 1일, 기상청은 위성자료 서비스를 위한 정규운영을 시작하였다. 천리안위성의 기상탑재체인 기상영상기는 다중채널 복사계로 한반도 주변뿐만 아니라 전 지구적 기후 변화 및 대기 운동 그리고 급변하는 기상상황을 감시하기 위해 실시간 관측과 전송 시스템을 갖추고 있다. 이 기상영상기를 운용하는 기상청 국가기상위성센터 지상국에서는 자료수신 및 영상전처리시스템을 갖추고 수신된 위성신호로부터 영상 분리 후 복사보정 및 기하보정을 수행하며, 위성자료배포시스템을 통해 일정 시간 간격 내에 사용자들에게 처리 자료를 배포하고 있다. 영상 복사보정은 기상영상기 내의 각 채널별 디텍터가 감지한 지구복사휘도의 전기적 신호를 지상에서 복사휘도와 휘도온도 값으로 변환하는 작업이다. 절대검정체로서 흑체와 우주보기 값을 이용하는 적외채널과 달리, 가시채널 디텍터는 절대검정체가 탑재되어있지 않기 때문에 우주보기 값 외에 대리검정 방법을 이용한다. 이러한 가시채널 노화도 분석에 달 관측을 통한 비교 분석이 한 방법으로 제시되고 있다. 천리안위성 기상영상기의 정규운영 1년간의 가시채널 디텍터의 노화도는 6 % 이내로 측정되었고, 이는 일반적인 정지궤도위성 센서의 노화도인 6 % 내외 값 변화량에 견주어 잘 운용되고 있음을 시사한다. 본 논문에는 천리안위성 기상영상자료의 품질 및 매개변수의 변화 경향도 함께 제시하였으며, 달을 이용한 기상영상기 노화 분석과 보정에 관한 내용을 싣고 있다.

  • PDF