본 논문에서는 particle swarm optimization(PSO)를 통한 비선형시스템의 퍼지집합 퍼지모델의 최적화 방법을 제안한다. 퍼지 모델링에서 전반부 동정, 즉 구조 동정 및 파라미터 동정은 비선형 시스템을 표현하는데 있어서 매우 중요하다. 퍼지모델의 전반부 동정에 있어 최적화 과정이 필요하며 유전자 알고리즘(Genetic Algorithm; GA)을 이용하여 퍼지모델을 최적화한 연구가 많이 있다. 본 연구는 파라미터 동정 시 최근 여러 가지 어려운 최적화 문제를 수행함에 있어서 성능의 우수성이 증명된 PSO를 이용하여 퍼지집합 퍼지모델의 전반부 파라미터를 동정하였다. 구조동정은 단순 유전자 알고리즘(Simple Genetic Algorithm; SGA)을 이용하여 동정하였으며 파라미터 동정시 실수 코딩유전자 알고리즘(Real Coded Genetic Algorithm; RCGA)와 PSO를 각각 파라미터 동정에 이용하여 성능을 비교하였다.
본 논문에서는 데이터의 특성을 이용한 정보 입자 기반 퍼지 뉴럴 네트워크의 연속적 최적화를 제안한다. 데이터들간의 거리를 중심으로 C-Means 클러스터링 알고리즘을 이용하여 멤버쉽 함수를 정의하고 각 중심의 후반부 중심값을 이용하여 후반부 학습에 적용한다. 구조/파라미터 동정에 있어서 실수 코딩 기반 유전자 알고리즘을 이용하여 입력변수의 수, 입력 변수의 선택, 멤버쉽함수의 수, 후반부 형태와 같은 시스템의 입력 구조와 전반부 멤버쉽함수의 정점 및 학습율과 모멘텀 계수와 같은 파라미터를 최적으로 동정한다. 또한, 구조 연산과 파라미터 연산의 연속적 동조 방법을 이용하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.11
no.6
/
pp.876-885
/
2000
A new and simple method is presented for determining the parasitic resistances of MESFET and HEMT from the measured S-parameters under normal active bias without depending on additional DC measurements or iteration or optimization process. The presented method is based on the fact that the difference between source resistance(Rs) and drain resistance(Rd) can be obtained from the measured Z-parameters under zero bias condition. It is possible to define the new internal device including intrinsic device and 3 parasitic resistances by elimination the parasitic inductances and capacitances from the measured S-parameters. Three parasitic resistances are calculated easily from the fact that the real parts of Yint,11 and Yint,12 of intrinsic Y-parameters are zero theoretically and the relations between S-,Z-, Y-matrices. The calculated parasitic resistances using the presented method and successively calculated equivalent circuit parameters give modeled S-parameters which are in good agreement with the measured S-parameters up to 400Hz.
The Journal of Korean Institute of Communications and Information Sciences
/
v.27
no.2B
/
pp.137-144
/
2002
In this paper, we optimize the base station placement and transmission power using genetic approach. A new representation describing base station placement and transmit power with real number is proposed, and new genetic operators are introduced. This new representation can describe the locations, powers, and number of base stations, Considering coverage, power and economy efficiency, we also suggest a weighted objective function. Our algorithm is applied to an obvious optimization problem, and then it is verified. Moreover, our approach is tried in inhomogeneous traffic distribution. Simulation result proves that the algorithm enables to fad near optimal solution according to the weighted objective function.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.1
/
pp.62-68
/
2009
Two new generation gap models with modified parent-centric recombination(PCX) operator are proposed. First, the self-adaptation generation gap(SGG) model is a control method that keeps a replaced probability of parents by offspring to a certain level which obtains better performance. Second, virtual cluster generation gap(VCGG) is provided to extend distances among parents using clustering, which causes it to diversify individuals. In this model, distances among parents can be controlled by size of clusters. To demonstrate the effectiveness of our two proposed approaches, experiments for three standard test problems are executed and compared to most competing current approaches, CMA-ES and Generalized Generation Gap(G3) with PCX. It is shown two proposed methods are superior to consistently other approaches in the study.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.44
no.11
/
pp.989-996
/
2016
This paper intends to develop the rotor track and balance (RTB) algorithm using the nonlinear RTB models and a real-coded hybrid genetic algorithm. The RTB response data computed using the trim solutions with variation of the adjustment parameters have been used to build nonlinear RTB models based on the quadratic interpolation functions. Nonlinear programming problems to minimize the track deviations and the airframe vibration responses have been formulated to find optimum settings of balance weights, trim-tab deflections, and pitch-link lengths of each blade. The results are efficiently resolved using the real-coded genetic algorithm hybridized with the particle swarm optimization techniques for convergence acceleration. The nonlinear RTB models and the optimized RTB parameters have been compared with those computed using the linear models to validate the proposed techniques. The results showed that the nonlinear models lead to more accurate models and reduced RTB responses than the linear counterpart.
The Transactions of the Korea Information Processing Society
/
v.7
no.2
/
pp.552-557
/
2000
In the paper, we proposed a face recognition method that uses GA-BP(Genetic Algorithm-Back propagation Network) that optimizes initial parameters such as bias values or weights. Each pixel in the picture is used for input of the neuralnetwork. The initial weights of neural network is consist of fixed-point real values and converted to bit string on purpose of using the individuals that arte expressed in the Genetic Algorithm. For the fitness value, we defined the value that shows the lowest error of neural network, which is evaluated using newly defined adaptive re-learning operator and built the optimized and most advanced neural network. Then we made experiments on the face recognition. In comparison with learning convergence speed, the proposed algorithm shows faster convergence speed than solo executed back propagation algorithm and provides better performance, about 2.9% in proposed method than solo executed back propagation algorithm.
Kim, Gil-Seong;Choe, Jeong-Nae;O, Seong-Gwan;Kim, Hyeon-Gi
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.341-344
/
2007
본 논문에서는 계층적 공정 경쟁 개념을 병렬 유전자 알고리즘에 적용하여 계층적 공정 경쟁 기반 병렬유전자 알고리즘 (Hierarchical Fair Competition Genetic Algorithm: HFCGA)을 구현하였을 뿐만 아니라 실수코딩 유전자 알고리즘(Real-Coded Genetic Algorithm: RCGA)에서 좋은 성능을 갖는 산술교배(Arithmetic crossover), 수정된 단순교배(modified simple crossover) 그리고 UNDX(unimodal normal distribution crossover)등의 다양한 교배연산자들을 적용, 분석함으로써 개선된 병렬 유전자 알고리즘을 제안하였다. UNDX연산자는 다수의 부모(multiple parents)를 이용하여 부모들의 기하학적 중심(geometric center)에 근접하게 정규분포를 이루며 생성된다. 본 논문은 UNDX를 이용한 HFCGA모델을 구현하고 함수파라미터 최적화 문제에 많이 쓰이는 함수들에 적용시킴으로써 그 성능의 우수성을 증명 한다.
Journal of Advanced Marine Engineering and Technology
/
v.34
no.1
/
pp.109-115
/
2010
This paper deals with trajectory control of computer simulated mobile robot via fuzzy control. Mobile robot is controlled by Mamdani type fuzzy controller. Inputs of the fuzzy controller are angle between mobil robot and target, changed angle and output is the steering angle, which is control input. Fuzzy rules have seven rules and are selected by human experiential knowledge. Also we propose a scaling factors tuning scheme which is the another focus in designing fuzzy controller. In this paper, we adapt the RCGA which is well known in parameter optimization to adjust scaling factors. The simulation results show that the fuzzy control effectively realize trajectory stabilization of the mobile robot along a given reference target from various initial steering angles.
Park, Keon-Jun;Kim, Yong-Kab;Kim, Byun-Gon;Hoang, Geun-Chang
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.181-189
/
2013
In this paper, we introduce the fuzzy neural network based on the individual input space to design the pattern recognizer. The proposed networks configure the network by individually dividing each input space. The premise part of the networks is independently composed of the fuzzy partition of individual input spaces and the consequence part of the networks is represented by polynomial functions. The learning of fuzzy neural networks is realized by adjusting connection weights of the neurons in the consequent part of the fuzzy rules and it follows a back-propagation algorithm. In addition, in order to optimize the parameters of the proposed network, we use real-coded genetic algorithms. Finally, we design the optimized pattern recognizer using the experimental data for pattern recognition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.