• Title/Summary/Keyword: 실린더후류

Search Result 74, Processing Time 0.026 seconds

Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number (저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성)

  • Song, Chang Geun;Seo, Il Won;Kim, Tae Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2267-2275
    • /
    • 2013
  • Existing conventional model for analysis of shallow water flow just assumed the internal boundary condition as free-slip, which resulted in the wrong prediction about the velocity, vorticity, water level, shear stress distribution, and time variation of drag and lift force around a structure. In this study, a finite element model that can predict flow characteristics around the structure accurately was developed and internal boundary conditions were generalized as partial slip condition using slip length concept. Laminar flow characteristics behind circular cylinder were analyzed by varying the internal boundary conditions. The simulation results of (1) time variations of longitudinal and transverse velocities, and vorticity; (2) wake length; (3) vortex shedding phenomena by slip length; (4) and mass conservation showed that the vortex shedding had never observed and laminar flow like creeping motion was occurred under free-slip condition. Assignment of partial slip condition changed the velocity distribution on the cylinder surface and influenced the magnitude of the shear stress and the occurrence of vorticity so that the period of vortex shedding was reduced compared with the case of no slip condition. The maximum mass conservation error occurred in the case of no slip condition, which had the value of 0.73%, and there was 0.21 % reduction in the maximum mass conservation error by changing the internal boundary condition from no slip to partial slip condition.

Flow Around an Elliptic Cylinder Placed Near a Plane Boundary (평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구)

  • Kim, Seong-Min;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).

Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF

Direct Numerical Simulation of the Lock-on Phenomena in the Wake behind a Circular Cylinder in a Perturbed Flow at Re=360 (Re=360에서 교란유동장에 놓인 원형실린더 후류의 유동공진 현상에 대한 직접수치해석)

  • Park, Ji-Yong;Kim, Soo-Hyeon;Bae, Joong-Hun;Park, No-Ma;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.780-789
    • /
    • 2007
  • Lock-on phenomenon in the wake of a circular cylinder is investigated at the Reynolds number of 360 using direct numerical simulation (DNS). To induce lock-on, a streamwise velocity perturbation with a frequency of twice the natural shedding frequency is superimposed on the free stream velocity. The Reynolds stress distributions are investigated to analyze the streamwise force balance acting on the recirculation region and the results are compared with the previous experimental result. When the lock-on occurs, the pressure force on the recirculation region is shown to increase mainly due to the reversal of the Reynolds shear stress distribution, which is consistent with our previous results using PIV measurement. It is also shown that, with the lock-on, the strength of the primary vortices increases whereas that of the secondary vortices decreases significantly. Further, under the lock-on condition the wavelength of the secondary vortices increases by as much as 2.5 times.

Flow Control of Turbulent Wake Behind a Circular Cylinder Using a Self-adjusting Rod (자율 제어봉을 이용한 실린더 후류의 유동제어에 관한 연구)

  • Lim Hee Chang;Kam Dong Hyuk;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.467-470
    • /
    • 2002
  • The offects of a small control rod (d=3mm) located near a main circular cylinder on the drag reduction and wake structure modification were investigated. The location of the small control rod mounted on a rod-like spring is self-adjusting according to the wake structure far optimal control of the flow around the main cylinder. The experiments were carried out at the Reynolds numbers based on the cylinder diameter (D=50mm) in the range $Re_{D}=1{\times}10^4{\~}6{\times}10^4$. Mean velocity and turbulent statistics were measured with varying the angle along the cylinder circumference ${\Theta}=15^{\circ},\;30^{\circ},\;45^{\circ}$ and the distance between the main and control rods L =0.7, 1. Compared with the bare cylinder, the main circular cylinder with the fixed and self-adjusting rods reduced drag coefficient by $10{\%}$ at the angle of ${\Theta}=45^{\circ}$. For the main cylinder with self-adjusting rot as the Reynolds numbers increase, the streamwise mean velocity is increased, however, the turbulence intensity is decreased. In addition, the control rods tested in this study are effective at higher Reynolds number than at lower Reynolds number.

  • PDF

Interrelationship Between Topological Structures and Secondary Vortices in the Near Wake of aCircular Cylinder (실린더 근접후류에서 위상학적 구조와 2차 와류의 상호 관계)

  • Seong, Jae-Yong;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1355-1364
    • /
    • 2001
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder, where the Taylor's hypothesis does nut hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV for various planes of view. The convection velocities of the Karman and secondary vortices are evaluated from the trajectory of the vortex center. Then, saddle points are determined by applying the critical point theory. It is shown that the inclination angle of the secondary vortices agrees well with the previous experimental data. The flow fields in a moving frame of reference have several critical points and the mushroom-like structure appears in the streamline patterns of the secondary vortices. Since the distributions of fluctuating Reynolds stresses defined by triple decomposition are closely related with the existence of secondary vortices, the physical meaning of them is explained in conjunction with the vortex center and saddle point trajectories.

A New Hybrid Volume PTV (하이브리드 볼륨 PTV(VPTV))

  • Doh, D.H.;Jo, H.J.;Cho, K.R.;Moon, K.R.;Lee, J.M.;Hwang, T.G.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2444-2447
    • /
    • 2008
  • A new 3D-PTV algorithm (a Volume PTV) based upon a hybrid fitness function has been constructed. A coherency fitness function is introduced using the information of space and time to sort out the correct particle pairs between the two camera images. The measurement system consists of two-high-definition-cameras($1k{\times}1k$), a Nd-Yag laser and a host computer. The developed algorithm has been employed to investigate the flow features of the cylinder wake. The Reynolds numbers with the cylinder diameter (d=10mm) are 360, 720, 900 and 1260. Two-dimensional displacements of the particles of each camera's image and neighbouring constraints were introduced to reduce the calculation loads. More than 10,000 instantaneous 3D vectors have been obtained by the constructed algorithm. The constructed algorithm could recover more than $80{\sim}90%$ of the particle numbers in the image.

  • PDF

우주발사체 개발을 위한 발사대 케이블마스트(CABLE MAST) 사례조사

  • Lee, Jeong-Ho;Lee, Yeong-Ho;Kim, Yong-Uk;O, Seung-Hyeop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.152.2-152.2
    • /
    • 2012
  • 우주발사체 발사를 위해서는 발사대시스템 개발이 필수적이다. 발사대시스템은 기계설비와 추진제공급설비, 관제설비로 구성되며, 그 중 기계설비는 발사지지대(Launch Pad), 이렉터(Erector), 트랜스포터이렉터(Transport-Erector), 케이블마스트(Cable-mast), 자동체결장치(Auto-coupling Device) 총 다섯 부분으로 나눌 수 있다. 발사지지대는 발사 전까지 발사체를 지지하는 구조물로 발사체의 안전을 보장하고 공급배관 및 통신라인의 경로를 제공한다. 이렉터는 발사준비과정에서 수평으로 이송된 발사체를 2개의 대형 유압실린더를 사용하여 기립시키는 장비로 발사 취소 시 발사체를 수평으로 전환한다. 트랜스포터이렉터는 조립공간에서 조립을 마치고 최종점검이 완료된 발사체를 전용차량을 이용하여 발사대로 이동하고 발사체를 안전하게 잡아준다. 자동체결장치는 지상으로부터 발사체로 연결되는 추진제, 압축가스 등의 연결배관을 자동으로 연결/분리하는 장치이다. 케이블마스트는 우주발사체 상단부의 UCU-E(Umbilical Connectors Unit-Electrical)를 통해서 전기, 고압가스, 고온공기 등을 공급하기 위한 통로로 발사 전까지 발사체시스템과 지상장비와의 통신수단이다. 또한 발사체로 연결되는 라인들을 발사 시에 나오는 후류에 의한 충격으로부터 보호하고, UCU-E가 기계적으로 분리되도록 구성되어 있다. 본 논문은 기존에 적용된 케이블마스트에 대한 구성, 기능 및 운용절차에 관한 것으로, 현재 진행 중인 한국형발사체 개발을 위한 기초 자료조사로 활용하고자 한다.

  • PDF

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

Flow Resistance of Model Cage Net (모형 우리 그물의 유수저항)

  • KIM Tae-Ho;KIM Dae-An;RYU Cheong-Ro;KIM Jae-O;JEONG Eui-Cheol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.514-519
    • /
    • 2000
  • In order to develop the method for the calculation of flow resistance acting on cage net, the relation between the velocity reduction factor and $S_n/S$, the ratio of total area of netting projected to the perpendicular to the water flow $S_n$ to wall area of netting S, was derived based on the numerical and experimental analysis of the wake flow through a netting twine simplified by a cylinder and a netting panel. The velocity was reduced in accordance with the velocity reduction factor when the flow passed the netting panel upstream of a cage net. The proposed method for the calculation of fluid force acting on a square cage net was based upon the assumption that it could be divided into four side panels and one bottom panel. It was proved that the force could be calculated by the sum of the drag forces acting on the individual netting panels.

  • PDF