• Title/Summary/Keyword: 실리콘 러버

Search Result 8, Processing Time 0.027 seconds

A Study on the Fabrication of Heater based on Silicone Rubber (실리콘러버 기반의 히터제작에 관한 연구)

  • Jeong-Oh Hong;Jae Tack Hong;Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • Since silicone rubber heaters are flexible, they can be directly attached or installed in objects to be heated even in flat, curved or three-dimensional shapes. Since the current heating method heats the entire object to be heated and raises it to a required temperature, ignoring areas or positions where heat is not required, partial intensive heating cannot be performed. When using multi-heating zones, rather than heating the entire object to be heated, only the parts that need heat are intensively heated according to the process, so it is possible to heat quickly by local location by applying different amounts of heat with a small amount of electric capacity to each place that needs heat, and heat energy can reduce. In this study, the temperature and heating time of the partially concentrated region in the multi-heating region structure are measured so that a uniform temperature or temperature difference occurs in the region requiring thermal fusion. In order to determine the optimal power density range and reduce capacitance, the safety of a silicon rubber heater manufactured with a multi-heating zone structure is investigated. If the silicon rubber heater is manufactured in a multi-heating method, the multi-intensive heating technology can be ideally applied to all heating processes.

핫 엠보싱을 이용한 3차원 미세 구조물 복제에 관한 연구

  • 박선준;정성일;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.150-150
    • /
    • 2004
  • 현재의 핫 엠보싱 기술은 나노/마이크로 패턴의 복제 기술로 다방면에서 연구되어지고 있다. 기존에 알려진 핫 엠보싱 기술은 하드 몰드를 사용하여 열과 압력을 가해서 PR 패턴 제작이나 나노/마이크로 구조물을 제작하였다. 그러나 이러한 하드 몰드의 사용은 3차원 구조물을 구현할 수 없다는 단점이 있다. 이에 본 연구에서는 하드 몰드 대신 소프트 몰드를 사용하여 3차원 미세 구조물을 구현해 보고자 한다.(중략)

  • PDF

Enhancement of Signal Transmission Characteristics Using Structural Changes in Silicone Rubber Socket (실리콘 러버 소켓의 구조 변경을 통한 신호 전달 특성 향상)

  • Seona Kim;Moonjung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.104-109
    • /
    • 2024
  • In this paper, we propose structures of a socket that can improve signal transmission characteristics compared to the existing silicone rubber socket. A coaxial rubber socket was proposed to improve signal distortion due to electromagnetic interference between signal lines. And an air gap rubber socket was proposed to improve the degradation of reflection characteristics due to high dielectric constant. Using a 3D electromagnetic field simulator, the S-parameter and crosstalk of the three sockets were compared and the signal transmission characteristics were analyzed. In both coaxial rubber socket and the air gap rubber socket, S-parameter and crosstalk were improved compared to the silicone rubber socket. Among them, the air gap rubber socket was the best for S-parameter, and the coaxial rubber socket was the best for crosstalk.

  • PDF

Fabrication and Characterization of Transparent Piezoresistors Using Carbon Nanotube Film (탄소나노튜브 필름을 이용한 투명 압저항체의 제작 및 특성 연구)

  • Lee, Kang-Won;Lee, Jung-A;Lee, Kwang-Cheol;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1857-1863
    • /
    • 2010
  • We present the fabrication and characterization of transparent carbon nanotube film (CNF) piezoresistors. CNFs were fabricated by vacuum filtration methods with 65?92% transmittance and patterned on Au-deposited silicon wafer by photolithography and dry etching. The patterned CNFs were transferred onto poly-dimethysiloxane (PDMS) using the weak adhesion property between the silicon wafer and the Au layer. The transferred CNFs were confirmed to be piezoresistors using the equation of concentrated-force-derived resistance change. The gauge factor of the CNFs was measured to range from 10 to 20 as the resistance of the CNFs increased with applied pressure. In polymer microelectromechanical systems, CNF piezoresistors are the promising materials because of their high sensitivity and low-temperature process.

Evaluation Method and Evaluation of Anti-icing Coating Material (결빙방지 코팅소재 평가법 및 특성평가)

  • Jo, Hui-Jae;Choe, Jun-Hyeon;Jeong, Yong-Chan;Lee, Su-Yeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.40-40
    • /
    • 2018
  • 강원도 혹한지역에 설치된 ACSR cable(Aluminium Conductor Steel Reinforced, 강심 알루미늄 연선)에 겔러핑(Galloping), 슬릿점핑(Sleet jumping) 등 빙설해로 인한 단전 및 단락 사고가 발생하여 전력망 운영에 심각한 문제를 초래하고 있다. 특히, 빙설해로 인한 정전사고는 전기 품질의 저하 뿐만 아니라, 국지적으로 발생하여 광범위하게 영향을 미치기 때문에 이에 대한 대응 및 예방기술이 요구되고 있다. 본 연구에서는 ACSR cable의 원 소재인 알루미늄 합금(Al 6061)을 대상으로 낮은 표면에너지를 갖는 결빙방지 코팅소재로 표면처리하여 결빙방지 성능을 향상하고자 하였다. 코팅소재와 얼음과의 접합특성은 결빙접합 특성 시험기를 사용하여 정량적으로 측정하였으며 시험기의 신뢰성 확보를 위해 FEM Modeling을 수행하였다. 결빙특성 지표인 ARF(Adhesion reduction factor)를 적용하여 소재별 결빙방지 효과를 비교 평가하였다. 코팅소재는 현재 해외 국내에서 상용화되고 있는 소수성, 초소수성 소재를 선정하였으며, 결빙접합강도와 매우 밀접하게 연관되어 있는 표면 에너지, 표면 거칠기와의 상관관계를 분석함으로써 결빙방지 코팅소재의 적합성을 평가하였다. 본 연구에서 개발한 상온 경화형 실리콘 러버 코팅소재는 원 소재 Al 대비 약 8~9배 낮은 탁월한 방빙성(Anti-icing) 효과를 나타내었으며, 내구성 또한 상용소재 대비 우수한 특성을 나타내었다.

  • PDF

Effect of Carbonization Temperature on the Surface Temperature of Carbonized Board (탄화온도가 탄화보드의 표면온도에 미치는 영향)

  • Oh, Seung-Won;Hwang, Jung-Woo;Park, Sang Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.60-66
    • /
    • 2018
  • For new use development of carbonized board, we investigated the effect of carbonization temperature on the surface temperature of carbonized board manufactured from a plywood, particle board, MDF, and wood of Fraxinus rhynchophylla at different carbonization temperature ($400^{\circ}C{\sim}1100^{\circ}C$). The surface temperature of carbonized board precipitously increased until 12 minutes elapsed, after smoothly increased and thereafter which were stable after 20 minutes. The higher carbonization temperature increased density of carbonized board and surface temperature of carbonized board so that density is considered to influence surface temperature change. Moreover, carbonized boards kept heat for a long time because the descent velocity of carbonized boards' surface temperature was slower than that of heater's.

A Study on the Improvement of Skin-affinity and Spreadability in the Pressed Powder using Air Jet Mill Process and Mono-dispersed PMMA (Air Jet Mill 공법과 PMMA의 단분산성이 프레스드 파우더의 밀착성 및 발림성 향상에 대한 연구)

  • Song, Sang Hoon;Hong, Kyong Woo;Han, Jong Seob;Kim, Kyong Seob;Park, Sun Gyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • The key quality attributes of the pressed powder, one of base makeup products, are skin-affinity and spreadability. In general, there was a limit to meet skin-affinity and spreadability simultaneously, which are opposite attributes each other. In this study, air jet mill process was tried to satisfy two main properties. Skin-affinity was improved by a wet coating of sericite with a mixture of lauroyl lysine (LL) and sodium cocoyl glutamate (SCG). The application of mono-dispersed polymethyl methacrylate (PMMA) and diphenyl dimethicone/vinyl diphenyl dimethicone/silsesquioxane crosspolymer (DDVDDSC) improved both qualities. Air jet mill process has been mainly applied in the pharmaceutical and food industries, and is a method used for processing powder materials in cosmetic field. In this study, we were able to complete makeup cosmetics with an optimum particle size $6.8{\mu}m$ by combining the air jet mill process at the manufacturing stage. It was confirmed that the Ti element was uniformly distributed throughout the cosmetics by EDS mapping, and that the corners of the tabular grains were rounded by SEM analysis. It is considered that this can provide an effect of improving the spreadability when the cosmetic is applied to the skin by using a makeup tool. LL with excellent skin compatibility and SCG derived from coconut with little skin irritation were wet coated to further enhance the adhesion of sericite. SEM images were analyzed to evaluate effect of the dispersion and uniformity of PMMA on spreadability. With the spherical shapes of similar size, it was found that the spreading effect was further increased when the distribution was homogeneously mono-dispersed. The dispersion and spreadability of PMMA were confirmed by measuring the kinetic friction and optimal content was determined. The silicone rubber powder, DDVDDSC, was confirmed by evaluating the hardness, spreading value, and drop test. Finally, it was found that the dispersion of PMMA and silicone rubber powder affected spreadability. Such makeup cosmetics have excellent stability in drop test while having appropriate hardness, and good stability over time. Taken together, it is concluded that air jet mill process can be utilized as a method to improve skin-affinity and spreadability of the pressed powder.

One-component Room Temperature Vulcanizing-Type Silicone Rubber-Based Solid-State Carbonate Ion Selective Electrode (단일 조성 실온 경화형 실리콘러버를 지지체로 사용한 고체상 탄산이온선택성 전극의 개발)

  • Kim, Mi-Kyoung;Yoon, In-Jun;Cho, Sung-Ho;Shin, Hye-Ra;Han, Jong-Ho;Ha, Jeong-Han;Nam, Hak-Hyun;Cha, Geun-Sig
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • We developed a miniaturized solid-state carbonate ion-selective electrode (carbonate ISE) based on one-component room temperature vulcanizing type silicone rubber 730 (730 RTV) without adding plasticizer to the matrix. The optimized carbonate ion selective membrane is prepared with 85.8 wt% of 730 RTV, 11.1 wt% of trifluoroacetyl-p-decylbenzene (TFADB), and 3.1 wt% of tridodecyl-methylammonium chloride (TDMACl). This carbonate ISE exhibited excellent potentiometric properties (i.e., slope: 26.3 mV/dec; selectivity: $logKT^{pot}_{CO_{2},Cl^-}$= -4.00 and $logKT^{pot}_{TCO_{2},Sal^-}$=1.69); and detection limit for $TCO_2:\;4.0{\times}10^{-4}M$). In addition, the early potentiometric properties of the solid-state sensor with optimized membrane composition were not deteriorated for more than 60 days.