• 제목/요약/키워드: 실리카겔/물

검색결과 41건 처리시간 0.034초

Concentration of Polyunsaturated Fatty Acids from Anchovy Oil by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 멸치어유의 고도불포화지방산 농축)

  • Lim, Sang-Bin;Jwa, Mi-Kyung;Song, Dae-Jin
    • Korean Journal of Food Science and Technology
    • /
    • 제30권4호
    • /
    • pp.848-854
    • /
    • 1998
  • To concentrate polyunsaturated fatty acids from anchovy oil by supercritical carbon dioxide $(SC-CO_2)$, effects of different adsorbents, cosolvents and extraction pressures on the extraction yield and fatty acid composition in the extract and the residue fractions were investigated. Anchovy oil mixed with silver nitrate-coated silica gel showed higher extraction yield and concentration of EPA and DHA in the residual fraction than that mixed with only silica gel at $60^{\circ}C/345{\;}bar$. Ethyl acetate was a promising cosolvent for concentrating polyunsaturated fatty acids in the residual fraction from anchovy oil mixed with silica gel. For the extraction pressures tested, 276 bar showed a maximum value in the extraction yield and concentration of EPA and DHA in the residue. Starting with anchovy oil containing 13.3% EPA and 16.2% DHA mixed with a silver nitrate-coated silica gel, the residue fraction containing 28.2% EPA and 38.3% DHA was obtained when ethyl acetate was used as a cosolvent with $SC-CO_2$ at $60^{\circ}C/276{\;}bar$.

  • PDF

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust (유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의)

  • Kim, Hyun Na;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • 제25권4호
    • /
    • pp.271-282
    • /
    • 2012
  • We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.

The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel (실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구)

  • Choi, Jae-Hyung;Park, Yong-Beom;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.583-588
    • /
    • 2010
  • Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.

Gas Hydrate Production Using Porous Material (다공질 물질을 이용한 가스 하이드레이트 제조기술)

  • Kang, Seong-Pil;Seo, Yu-Taek;Chang, Won-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.595-596
    • /
    • 2008
  • 가스 하이드레이트의 생성속도와 전환율을 높이며, 동시에 생성유도시간을 억제하기 위한 방법으로 다공질 물질을 활용하여 공극 내에 물을 함침시킨 후 가스와 반응시키는 제조방법을 개발하였다. 내용적 10 L 의 대용량 고압 반응기를 제작하여 실험을 수행하였으며, 장치 대형화에 따른 다공질 실리카겔의 다짐현상에 의한 발열제어 등에 대한 문제점은 특별히 나타나지는 않았다. 하이드레이트 형성을 위한 구동력이 높을수록 생성속도가 좋아지는 것을 확인하였다. 일반 벌크상 하이드레이트 제조법과 비교하여 매우 높은 생성속도 및 전환율, 거의 제거된 생성유도시간 등은 응용기술로 활용하기에 매우 바람직한 특성으로써 선택적인 가스분리, 가스저장 매체로 활용이 가능하다.

  • PDF

Cycle Simulation of an Adsorption Chiller Using Silica Gel-water (실리카겔-물계 흡착식 냉동기 사이클 시뮬레이션)

  • Kwon, Oh-Kyung;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제31권2호
    • /
    • pp.116-124
    • /
    • 2007
  • An adsorption chiller is expected to have high energy-efficiency in utilizing the waste heat exhausted from a process. The objective of this paper is to investigate the performance of silica gel-water adsorption chiller from the cycle simulation and to provide a guideline for design of the adsorption chiller. The effect of cycle time, inlet temperature and water flow rate on the cooling capacity and COP is quantified during the cycle operation. It is found that the performance of adsorption chiller is more sensitive to the change of inlet water temperature rather than the water flow rate. It is concluded that the COP is 0.57 in the standard conditions(hot water $80^{\circ}C$, cooling water $30^{\circ}C$, chilled water inlet temperatures $14^{\circ}C$ and cycle time 420sec).

An Experimental Study of Adsorption Chiller using Silica gel-Water (실리카겔-물계 흡착식 냉동기에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF

Kinetic Study on Carbon Dioxide and Methane Hydrate in Silica Gel Pores (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 생성속도)

  • Kang, Seong-Pil;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.590-593
    • /
    • 2007
  • 물을 함유한 공극 크기 6, 30, 100 nm의 실리카겔에 이산화탄소 및 메탄을 반응시켜 온도$0{\sim}4$ $^{\circ}C$, 압력 $15{\sim}40$ bar 의 범위에서 가스 하이드레이트 생성속도를 측정하였다. 공극 크기가 작아짐에 따라 특정 온도에서의 평형압력이 높아지는 열역학적 특성을 감안하여 통일한 압력차 (평형압력과 실험압력의 차)를 얻을 수 있도록 조건을 설정하였다. 이산화탄소의 경우 통일 온도에서 하이드레이트 생성속도는 일반적으로 압력이 높아짐에 따라 가속되는 것을 알 수 있었다. 단위 물 당 포집되는 이산화탄소의 양은 최대 1.0을 넘지 못하였다. 또한 하이드레이트 생성을 위해 필요한 유도시간 (induction time)이 2내지 8시간 수준으로 매우 길었다. 공업적인 하이드레이트 이용을 위해서는 빠른 생성속도가 필요한 만큼 유도시간을 단축, 없애기 위해 계면활성제로 황산 도데실 나트륨 (sodium dodecyl sulphate)이 첨가된 수용액을 이용하였다. 계면활성제가 포함된 수용액에서의 하이드레이트 생성은 유도시간이 사라져 매우 빠르게 바뀌었고, 포집되는 이산화탄소도 15% 정도 증가되었다. 메탄의 경우에는 공극 크기가 작아질수록 하이드레이트 생성속도 및 가스 포집도가 저하되는 결과를 보였다. 이산화탄소의 경우와는 다르게 유도시간이 나타나지 않았으며 비교적 높은 가스 포집도를 얻기 위해서는 평형압력과 실험압력의 차이가 최소 2.0MPa 이상이어야 했다.

  • PDF

Gas Hydrate Phase Equilibria of $CO_2+H_2$ Mixture in Silica Gel Pores for the Development of Pre-combustion Capture (연소 전 이산화탄소 회수기술을 위한 실리카겔 공극 내에서의 이산화탄소+수소 혼합가스 하이드레이트의 상평형)

  • Kang, Seong-Pil;Jang, Won-Ho;Jo, Wan-Keun
    • Clean Technology
    • /
    • 제15권4호
    • /
    • pp.258-264
    • /
    • 2009
  • Thermodynamic measurements were performed to show the possibility of recovering $CO_2$ from fuel gas (the mixture of $CO_2$ and $H_2$) by forming gas hydrates with water where water was dispersed in the pores of silica gel particles having nominal 100 nm of pore diameter. The hydrate-phase equilibria for the ternary $CO_2+H_2$+water in pores were measured and $CO_2$ concentrations in vapor and hydrate phase were determined under the hydrate-vapor two phase region at constant 274.15 K. It was shown that the inhibition effect appeared due to silica gel pores, and the corresponding equilibrium dissociation pressures became higher than those of bulk water hydrates at a specific temperature. In addition, direct measurement of $CO_2$ content in the hydrate phase showed that the retrieved gas from the dissociation of hydrate contained more than 95 mol% of $CO_2$ when 42 mol% of $CO_2$ and balanced Hz mixture was applied. Compared with data obtained in case of bulk water hydrates, which showed just 83 mol% of $CO_2$ where 2-stage hydrate slurry reactor was intended to utilize this property, the hydrate formation in porous silica gel has enhanced the feasibility of $CO_2$ separation process. Hydrate formation as not for slurry but solid particle makes it possible to used fixed bed reactor, and can be a merit of well-understood technologies in the industrial field.

Effect of Water Volume and Relaxation Time in the Design of Nano Shock Absorbing Damper Using Silica Particle (실리카 분말을 이용한 나노 충격완화 장치의 설계에서 작동 유체 영향과 복원 시간에 대한 연구)

  • 문병영;김병수
    • Journal of the Korean Ceramic Society
    • /
    • 제40권3호
    • /
    • pp.286-292
    • /
    • 2003
  • In this study, new shock absorbing system was proposed using silica gel particles according to the nano-technology. For the design and real application of the proposed damper, an experimental investigations are carried out using colloidal damper, which is statically loaded. The porous matrix is composed from silica gel(labyrinth architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis were described. Iufluence of the water volume and particle diameters upon the reversible colloidal damper hysteresis was investigated. Also, influence of the relaxation time on the hysteresis of the damper was investigated. As a result, the proposed new shock absorbing damper is proved as an effective one, which can be replaced for the conventional hydraulic damper.

A study on the synthesis of porous silica from a sodium silicate (물유리로부터 다공성 실리카 제조에 관한 연구)

  • Yoo, Jeong-Kun;Keum, Young-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제15권4호
    • /
    • pp.2519-2525
    • /
    • 2014
  • WeI have studied the process for synthesizing porous silica with a specific surface area of minimum $800m^2/g$ by adding surfactant [Poly Etylene Glycol(PEG) and Hydroxy Propyl Cellulose(HPC)] to the sol-gel reaction between sodium silicate and hydrochloric acid. NaCl, the by-product of the sol-gel reaction, was water cleaned and removed; when 200 ml of water was used to clean 50 g of silica gel, NaCl remaining in the silica gel was reduced to maximum 0.81wt%. The appropriate level of surfactant for silica gel synthesizing proved to be below 5%. As a result of the experiment, for the silica synthesized by adding surfactant of HPC(2.5%)+PEG(2.5%), the surfactant area was $860m^2/g$ and grain size was $20-50{\mu}m$. From this study, we have concluded that it is of industrial significance that specific surface area is improved and silica of a regular grain size is obtained just by adding surfactant in the gel process or drying process of silica.