• Title/Summary/Keyword: 실대형시험

Search Result 57, Processing Time 0.026 seconds

Study on the Temperature Distribution of Cabin under Various Car Heating Modes (난방기 출력에 따른 철도차량 객실 내부 온도 분포 분석)

  • Cho, Youngmin;Yoon, Young-Kwan;Park, Duck-Shin;Kim, Tae-Wook;Kwon, Soon-Bark;Jung, Woo-Sung;Kim, Hee-Man
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.558-565
    • /
    • 2012
  • Abnormal climate or weather is more frequently reported nowadays due to the global climate change. Especially, extremely low temperature in winter season may cause bad thermal discomfort of passengers. In this study, the effect of car heating modes on cabin temperature change and distribution was studied by using a real-scale environmental chamber for passenger cabin. It was found that the cabin temperature rose quickly at the initial stage of heating system operation, but it stopped increasing after certain point. And, temperature was higher when the height from the floor was higher. Based on the obtained result, the way to minimize the decrease of passengers' thermal comfort was suggested.

Behavior of Geotextile Tube by Plane Strain Analysis and 3-Dimensional Finite Element Method (평면변형해석과 3-D FEM 기법을 통한 지오텍스타일 튜브의 거동해석)

  • 신은철;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.233-241
    • /
    • 2003
  • Geotextile tube is hydraulically filled with dredged materials and has been applied to coastal protection and scour protection, dewatering method of slurry, and isolation of contaminated material. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. In this paper, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile sheet and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also with those of plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be in a good agreement.

Numerical Analysis on Fragmentation Mechanism by Indentation of Disc Cutter in a Rock Specimen with a Single Joint (단일절리를 포함한 암석 시험편에서 디스크 커터의 압입에 의한 파괴 메커니즘의 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.440-449
    • /
    • 2009
  • LCM test is one of the most powerful and reliable methods of experiment for the cutter head design and the performance prediction of TBM. In many cases, however, the predicted design model can be directly applied to the field design, because this test may have an uppermost limit in preparation and/or transportation of the large size rock samples and the test for the jointed rock mass is not easy. When the proper and reasonable numerical modeling is considered to overcome this limit, the most adequate cutter head design for TBM could be presented without any complicate preconsideration in the field. In this study, the crack propagation patterns dependent on the contact point of disc cutter and the angle of rock joint are analyzed for the rock specimen with a single joint using the UDEC. The authors could derive the appropriate contact points of disc cutters and their space with respect to the joint angle in rock mass thru the numerical analysis.

The Study on Compartment Fire Experiment According to Fire Load (화재하중에 따른 구획화재 실험 연구)

  • Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.16-22
    • /
    • 2017
  • In Korea, performance-based fire safety designs are being discussed to deal with the various risks of fire in complex and diverse types of structure. However, performance-based fire safety designs are not actively employed because it is difficult to estimate the fire characteristics related to the various factors in buildings. In this study, real scale fire tests were conducted based on fire severity levels and fire loads provided in He New Zealand Building Code, in order to use the results as guidelines and fundamental data for performance-based designs. In the real scale fire tests conducted in a 10MW full-scale calorimeter, wood cribs were placed in a $2.4(L){\times}3.6(W){\times}2.4(H)m$ mock-up of a compartment which had one $0.8(L){\times}2.0(H)$ opening for different fire loads and heating was continued until all of the wood cribs were burned down. The heat release rate started to increase rapidly 90 seconds after the wood cribs caught fire. In the test with a fire load level 1, the maximum heat release rate of 4743.4 kW was reached at 244 second. In the test with fire load level 2, a maximum heat release rate of 5050.9 kW was reached at 497 second. In the test with fire load level 3, a maximum heat release rate of 4446.9 kW was reached at 677 second.

Three Dimensional Numerical Analysis on Rock Cutting Behavior of Disc Cutter Using Particle Flow Code (3차원 입자결합모델을 이용한 디스크 커터의 암석절삭에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.54-65
    • /
    • 2013
  • The LCM (Linear Cutting Machine) test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. In order to overcome this problem, lots of numerical studies have been performed. In this study, the PFC3D (Particle Flow Code in 3 Dimension) has been adopted for numerical analysis on optimum cutter spacing and failure aspects of Busan Tuff. The optimum cutting condition with s/p ratio of 16 and minimum specific energy of $14MJ/m^3$ was derived from numerical analyses. The cutter spacing for Busan Tuff had the good agreements with those of LCM test and numerical analysis by finite element method.

Deformation Measurement of Roadbed in Full-scale Field Test to Determine an Optimum Trackbed of High-Speed Railway (고속철도 노반의 최적단면 결정을 위한 실대형 모형시험에서의 노반 변형 계측)

  • Jung, Young-Hoon;Kim, Hak-Sung;Byeon, Bo-Hyeon;Lee, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2821-2829
    • /
    • 2011
  • Since the KTX was in operation in 2004, a number of researches on increasing the train speed have been conducted. Currently, the Honam High-speed train system is designed for the operation velocity of 350km/h. The societal demand expects higher operation speed, whereas the existing construction method and design specification are questioned in the KTX operation in the velocity over 350 km/h. In this study, a full-scale model test was conducted to obtain the preliminary data that is necessary to understand deformation characteristics of the reinforced road bed and the subgrade layers. In the full-scale model test, direct arrival seismic tests, crosshole seimic test, in-situ bender element test and sensing bar test were employed to measure the stiffness and deformation of the trackbed. The systematic analysis on the different set of measurements enhances the understanding of the behavior of the trackbed.

  • PDF

Assessment for Vertical Earth Pressure of Roadbeds Applied to Slab Track Structure by Real-scale Loading Tests (실대형 재하시험을 통한 슬래브궤도 노반의 연직토압 평가)

  • Lee, Tae-Hee;Lee, Jin-Wook;Won, Sang-Soo;Lee, Seong-Hyeok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2057-2063
    • /
    • 2011
  • Recently, concrete slab track is mostly used to satisfy requirements for safety of high-speed train operation and economical efficiency of maintenance. Due to structural characteristics of ballast track structures, roadbeds under the ballast experience a state of high stress. In case of slab track structures, however, its roadbeds place on a condition of low stress less than roadbeds of ballast track structures as increasing of the loading area. In this study, vertical earth pressure under slab track structures was investigated through real-scale loading tests and theoretical analysis to compare with each other.

  • PDF

Design of Integrated Smart Fire Protection System for Rack Storage (랙크식 창고 통합 스마트 화재대응 시스템 설계)

  • Kim, Jong-Hoon
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.26-36
    • /
    • 2020
  • It is very difficult to suppress fire by rapid flame spread through flue space between flammable commodities on the rack when a fire occurs in the rack storage. At present, the fire protection system for rack storage in Korea has many issues, and the new fire protection system was designed and developed by it. A smart system using the sensor network and artificial intelligence was designed to detect fire very rapidly and track the location of a fire. In the very early stages, the system was constructed using vertical open sprinkler pipes, wet pipes, and solenoid valves to allow water to spray near fire locations. Based on the design results, the system was installed and tested, and the full-scale test was successfully completed.

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(3) (고장력 인장봉으로 보강된 RC 보의 휨 거동에 관한 실험적 연구(3))

  • Shin, Kyung-Jae;Kim, Yoon-Jung;Moon, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • Unlike external bonded steel plate or carbon fiber, the external unbonded strengthening using hi-strength bar has some advantages in speed and simplicity of installation. It is not required surface preparations and not affected by environmental conditions. A set of nine laboratory tests on RC beams strengthened using the hi-tension bars are reported. Anchoring pin developed in former research is installed at the end of beam to connect the hish-tension bar to RC beam. The test results strengthened by hi-tension bars are compared with those of non-strengthened specimens. The main test parameters are the cross-sectional area of the high-tension bar, distance of stirrups and condition of supports. Test results show that the beams reinforced are superior to reference specimens, especially for the strength and deformation capacity. Also, shear resisting effect of hi-strength bar can be confirmed in the specimens which have lack of stirrups.

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.