• Title/Summary/Keyword: 실내 대피

Search Result 64, Processing Time 0.02 seconds

Evacuation Route Searching when disasters occur in indoor utilizing audible·inaudible signal (가청·비 가청 대역을 활용한 실내 공간에서 재난발생 시 대피 경로 탐색방안)

  • Kim, Nam-moon;Kim, Jung-gon;Kim, Young-ok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.72-74
    • /
    • 2015
  • 본 논문에서는 시뮬레이션에 머물렀던 기존의 재난 대피경로 안내 기술을 지향성 스피커와 스마트 디바이스와 결합하여 실제 재난발생 시 적용 가능한 기술을 제안하고자 한다. 기존의 연구에서 얻은 대피 경로에 대한 정보를 기반으로 지향성 스피커의 방향과 소리의 크기 등의 컨트롤을 통해서 대피자들이 대피 방향을 인지할 수 있도록 하고, 보유하고 있는 스마트 디바이스를 활용하여 대피 방향에 대한 탐색을 통해서 재난으로부터 발생되는 인명 피해를 최소화 하는 기술을 제안하였다. 또한, 가청 과 비 가청 대역을 이용한 대피 안내 방송 송출을 통해서, 재난 발생으로 혼란한 상황에서도 대피 방향 탐색의 정확도를 높일 수 있는 기술을 제안 하였다.

  • PDF

Using a Spatial Databases for Indoor Location Based Services (실내위치기반서비스를 위한 공간데이터베이스 활용기법)

  • Cho, Yong-Joo;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.157-166
    • /
    • 2009
  • There is a growing interest in ubiquitous-related research and applications. Among them, GPS-based LBS have been developed and used actively. Recently, with the increase of large size buildings and disastrous events, indoor spaces are getting attention and related research activities are being carried out. Core technologies regarding indoor applications may include 3D indoor data modeling and localization sensor techniques that can integrate with indoor data. However, these technologies have not been standardized and established enough to be applied to indoor implementation. Thus, in this paper, we propose a method to build a relatively simple 3D indoor data modeling technique that can be applied to indoor location based applications. The proposed model takes the form of 2D-based multi-layered structure and has capability for 2D and 3D visualization. We tested three prototype applications using the proposed model; CA(cellular automata)-based 3D evacuation simulation, network-based routing, and indoor moving objects tracking using a stereo camera.

  • PDF

Microscopic Evacuation Simulation in Large-scale Buildings using EgresSIM (EgresSIM을 이용한 대형건축물의 미시적 대피시뮬레이션)

  • Kwak, Suyeong;Nam, Hyunwoo;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • This paper introduces 'EgresSIM', which is microscopic evacuation simulation software. EgresSIM developed in this paper is a three-dimensional (3D) pedestrian evacuation simulator based on the improved model advanced from the floor field model(FFM), a microscopic pedestrian model. This software can simulate large size buildings that consist of a number of floors, stairs, rooms, and exit doors. Moreover, this software can arrange several hundreds or thousands of pedestrians in indoor space and check their movements through the 3D viewer in real time, as well as produce detailed results about evacuation situations such as which paths are employed by individual pedestrians, how long does it takes to evacuate, and how many evacuees are gathered at each of the exit doors. Building data needed in the simulation are constructed as XML files according to pre-defined indoor data models and information of simulation results is also created as XML log files. A moving pattern of pedestrians can be represented in many ways by adjusting the sensitivity parameters of two walk models supported by EgresSIM. Thus, evacuation simulation can be done based on many assumptions of situations such as movement to the nearest exit door or blackout after outage.

Life-Road : Development of an Emergency Evacuation Application using Augmented Reality and Beacon (Life-Road : 증강현실과 비콘을 사용하는 긴급대피용 애플리케이션 개발)

  • Myeon-gyun Cho
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.11-15
    • /
    • 2023
  • Recently, a fire suddenly broke out in a crowded theater, and many people were unable to find an escape route, becoming entangled, injured, and suffocating from smoke inhalation, resulting in a large-scale fire accident. Even though most of the people were young, they were unable to evacuate. If they had been elderly, it could have resulted in greater casualties. In particular, since it is difficult to receive accurate location information from GPS indoor, there is an urgent need for location-based services using beacons and an emergency evacuation system that intuitively shows evacuation routes in augmented reality using smart-phones. In this paper, an augmented reality-based emergency evacuation smartphone app was developed based on identifying fire locations and evacuation routes using beacons and fire sensors (IoT). In the future, if the proposed system is applied to indoor spaces where people are crowded, rapid evacuation will be possible even in a sudden fire accident, minimizing human damage.

A Prototype for Real-time Indoor Evacuation Simulation System using Indoor IR Sensor Information (적외선 센서정보기반 실시간 실내 대피시뮬레이션 시스템 프로토타입)

  • Nam, Hyun-Woo;Kwak, Su-Yeong;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2012
  • Indoor fire simulators have been used to analyse building safety in the events of emergency evacuation. These applications are primarily focused on simulating evacuation behaviors for the purpose of checking building structural problems in normal time rather than in real time situations. Therefore, they have limitations in handling real-time evacuation events with the following reasons. First, the existing models mostly experiment the artificial situations using randomly generated evacuees while real world requires actual data. Second, they take too long time in operation to generate real time data. Third, they do not produce optimal results to be used in rescueing or evacuation guidance. In order to solve these limitations, we suggest a method to build an evacuation simulation system that can be used in real-world emergency situations. The system performs numerous simulations in advance according to varying distributions of occupants. Then the resulting data are stored in DBMS. The actual person data captured in infrared sensor network are compared with the simulation data in DBMS and the querried data most closely is provided to the user. The developed system is tested using a campus building and the suggested processes are illustrated.

Optimal Deployment for Evacuation Safety Zone at Intermodal Transfer Station (복합환승센터 피난대피구역 적정 배치 방법론 개발)

  • You, So-Young;Jeong, Eunbi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.27-42
    • /
    • 2019
  • It is not easy to evacuate when people face with emergency situation in deep underground space because space perception and synthetic judgement are readily lowered. In stead of evacuating safely outside within the given time, evacuation safety zone is required to be designed and installed. In this study, PATS (Pedestrian movement based Assessment Toolkit for Simulation) is applied to build a comprehensive and analytic framework for seeking the optimal (or proper) numbers and locations of evacuation safety zone. With two scenarios of emergency situation at intermodal transfer center with the 6 floor in underground, the problematic location on the evacuation path has been identified and the proper locations has been presented.

Study on Safety Evacuation in Lack of Vision information (시각정보 부재 시 안전 대피 기술 연구)

  • Lim, Gi-Hong;An, Byung-Kwon;Kim, Nam-Hyun;Lee, Seung-Gu;Ahn, Deock-Hyeon;Kim, Youngok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.175-178
    • /
    • 2016
  • 실내에서의 화재 등의 재난 상황에서는 비장애인과 장애인 모두 시야 확보가 어려워져 안전하게 대피하기 어려운 위험에 직면하게 된다. 본 논문에서는 시각정보 부재 시에 보행자의 다양한 장애물에 대한 회피 및 충돌상황 방지를 위한 안전 기술에 대한 연구를 수행하였다. 특히 주변의 다양한 위험 정보를 인지하기 어려운 시각 및 청각장애인들이 안전에 위협을 느낄 수 있는 복잡한 실내외 구조물과, 시시각각 변하는 주변의 장애물 환경에 대처하기 위하여 MCU를 활용한 보드에 진동 모터, 초음파, LED 센서를 장착하여 탈부착이 가능한 웨어러블(Wearable) 모듈을 제작하였다. 장애물 감지를 위한 센서부는 사용자의 상체부 전반에 장착되어 주변의 장애물들을 보다 넓은 범위로 인식하고 대처할 수 있으며, 이후 다양한 관제시스템에 활용 가능하도록 모듈과 사용자간의 인터넷 통신을 이용하여 실시간으로 시각 및 청각장애인들의 위험감지를 보호자에게 신속하게 알려줄 수 있는 시스템을 개발하여 그 가능성을 확인하였다.

  • PDF

Demonstration of Disaster Information and Evacuation Support Model for the Safety Vulnerable Groups (안전취약계층을 위한 재난정보 및 대피지원 모델 실증)

  • Son, Min Ho;Kweon, Il Ryong;Jung, Tae Ho;Lee, Han Jun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.465-486
    • /
    • 2021
  • Purpose: Since most disaster information systems are centered on non-disabled people, the reality is that there is a lack of disaster information delivery systems for the vulnerable, such as the disabled, the elderly, and children, who are relatively vulnerable to disasters. The purpose of the service is to improve the safety of the disabled and the elderly by eliminating blind spots of informatization and establishing customized disaster information services to respond to disasters through IoT-based integrated control technology. Method: The model at the core of this study is the disaster alert propagation model and evacuation support model, and it shall be developed by reflecting the behavioral characteristics of the disabled and the elderly in the event of a disaster. The disaster alert propagation model spreads disaster situations collected using IoT technology, and the evacuation support model uses geomagnetic field-based measuring technology to identify the user's indoor location and help the disabled and the elderly evacuate safely. Results: Demonstration model demonstration resulted in an efficient qualitative evaluation of indoor location accuracy, such as the suitability of evacuation route guidance and satisfaction of services from the user's perspective. Conclusion: Disaster information and evacuation support services were established for the safety vulnerable groups of mobile app for model verification. The disaster situation was demonstrated through experts in the related fields and the disabled by limiting it to the fire situation. It was evaluated as "satisfaction" in the adequacy of disaster information delivery and evacuation support, and its functional satisfaction and user UI were evaluated as "normal" due to the nature of the pilot model. Through this, the disaster information and evacuation support services presented in this study were evaluated to support the safety vulnerable groups to a faster disaster evacuation without missing the golden time of disaster evacuation.

Developing a 3D Indoor Evacuation Simulator using a Spatial DBMS (공간 DBMS를 활용한 3차원 실내 대피 경로 안내 시스템)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Currently used 3D models, which are mostly focused on visualization of 3D objects and lack topological structure, have limitation in being used for 3D spatial analyses and applications. However, implementing a full topology for the indoor spatial objects is less practical due to the increase of complexity and computation time. This study suggests an alternative method to build a 3D indoor model with less complexity using a spatial DBMS. Storing spatial and nonspatial information of indoor spaces in DB tables enables faster queries, computation and analyses. Also it is possible to display them in 2D or 3D using the queried information. This study suggests a 2D-3D hybrid data model, which combines the 2D topology constructed from CAD floor plans and stored in a spatial DBMS and the 3D visualization functionality. This study showed the process to build the proposed model in a spatial DBMS and use spatial functions and queries to visualize in 2D and 3D. And, then, as an example application, it illustrated the process to build an indoor evacuation simulator.

  • PDF

Development of a Server-independent System to Identify and Communicate Fire Information and Location Tracking of Evacuees (화재정보 확인과 대피자 위치추적을 위한 서버 독립형 시스템 개발)

  • Lee, Chijoo;Lee, Taekwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.677-687
    • /
    • 2021
  • If a fire breaks out in a building, occupants can evacuate more rapidly if they are able to identify the location of the fire, the exits, and themselves. This study derives the requirements of system development, such as distance non-limitation, a non-additional device, a non-centralized server system, and low power for an emergency, to identify information about the fire and the location of evacuees. The objective is to receive and transmit information and reduce the time and effort of the database for location tracking. Accordingly, this study develops a server-independent system that collects information related to a building fire and an evacuee's location and provides information to the evacuee on their mobile device. The system is composed of a transmitting unit to disseminate fire location information and a mobile device application to determine the locations of the fire and the evacuee. The developed system can contribute to reducing the damage to humans because evacuees can identify the location of the fire, exits, and themselves regardless of the impaired server system by fire, the interruption of power source, and the evacuee's location. Furthermore, this study proposes a theoretical basis for reducing the effort required for database construction of the k-nearest neighbor fingerprint.