• Title/Summary/Keyword: 실내라돈기체

Search Result 9, Processing Time 0.021 seconds

Characterization of Radon Concentration in Public Facilities (다중이용시설의 실내공기중 라돈농도분포 특성)

  • 김윤신;홍승철;이철민;박원석;이태형;전형진;조정현
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.529-530
    • /
    • 2003
  • 우라늄(U-238)의 붕괴과정에서 생성되는 라돈(Rn-222)은 다른 물질과 화학적으로 결합 또는 부착하지 않는 불활성 기체이고 상대적으로 긴 반감기를 갖고 있기 때문에 충분한 시간 동안 공기중에 머물러 있으므로 다른 자연방사선원에 비하여 라돈과 라돈자손에 의한 일반인의 자연방사선피폭 기여도가 가장 높다(Jamil K. 1997). 이미 세계 여러 나라에서는 라돈피폭에 기인한 건강상의 위해를 인식하여 주택을 비롯한 여러 생활공간의 실내 및 음용수 중의 라돈농도에 대한 대규모적인 측정을 수행하고 있으며, 그 결과 미국 내 상당수의 주택이 미국 환경청에서 권고치(action level)로써 권고하고 있는 150 Bq/m3(실내공기중)와 11.100 Bq/m3(음용수중)응 초과하는 것으로 나타났다(U,S,EPA, 1992).(중략)

  • PDF

Evaluation of Decreasing Concentration of Radon Gas for Indoor Air Quality with Magnesium Oxide Board using Anthracite (안트라사이트를 활용한 산화마그네슘 보드의 실내 공기질 중 라돈가스 농도 저감 평가)

  • Pyeon, Su-Jeong;Lim, Hyun-Ung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Radon gas, which is present on the earth, is a primary carcinogen released from rocks, soil, building materials, etc., and exists as a unique gas phase. In order to solve the risk of radon gas, we evaluated the basic performance which can be used as indoor finishing materials in addition to the radon gas reduction properties of the matrix using anthracite. An anthracite used as a conventional filter material was used to produce a matrix, and a test was conducted to replace the gypsum board, which is one of the building materials used in the existing room. As the anthracite replacement ratio increases, flexural failure load strength increases and thermal conductivity tends to decrease. Depending on the thickness of the board, the reduction performance of radon gas shows a slight difference.

Formation of Ultra fine Particle by the Polonium-218 Ions under Different Humidity Conditions (다른 습도조건하에서 Po-218 이온들의 극소입자형성에 관한 연구)

  • Yoon, Suk-Chul;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1992
  • A number of investigators have reported the formation of the radiolytic ultrafine particles produced by the interaction of ionizing radiation with water vapor. Previous studies have suggested that a very high localized concentration of the OH radical produced by the radiolysis of water can react with trace gas like organic vapors and produce lower vapor pressure compounds that can then nucleate. In order to determine water vapor dependence of the active, positively charged, first radon daughter(Po-218), an experiment was conducted using a well-controlled radon chamber. The activity size distribution of the radon daughter in the range of 0.5-100nm was measured using the parallel graded wire screens system. Measurements were taken for different relative humidity. The resultant activity size distributions were analyzed. The addition of water vapor to the radon carrier gases resulted in the formation of ultrafine particles by OH radicals formed by radon radiolysis. It may be due to the neutralization of charged Po-218 ion with water vapor through the radio lysis.

  • PDF

A Study of Radon Reduction using Panel-type Activated Carbon (판재형 활성탄을 이용한 라돈 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Jun, Jae-Hoon;Yang, Seung-Woo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Recently, building materials and air purification filters with eco-friendly charcoal are actively studying to reduce the concentration of radon gas in indoor air. In this study, radon reduction performance was assessed by designing and producing new panel-type activated carbon filter that can be handled more efficiently than conventional charcoal filters, which can reduce radon gas. For the fabrication of our panel-type activated carbon filter, first the pressed molding product after mixing activated carbon powder and polyurethane. Then, through diamond cutting, the activated carbon filter of 2 mm, 4 mm and 6 mm thickness were fabricated. To investigate the physical characteristics of the fabricated activated carbon filter, a surface area and flexural strength measurement was performed. In addition, to evaluate the reduction performance of radon gas in indoor, the radon concentration of before and after the filter passes from a constant amount of air flow using three acrylic chambers was measured, respectively. As a result, the surface area of the fabricated activated carbon was approximately $1,008m^2/g$ showing similar value to conventional products. Also, the flexural load was found to have three times higher value than the gypsum board with 435 N. Finally, the radon reduction efficiency from indoor gas improved as the thickness of the activated carbon increases, resulting in an excellent radon removal rate of more than 90 % in the 6 mm thick filter. From the experimental results, the panel-type activated carbon is considered to be available as an eco-friendly building material to reduce radon gas in an enclosed indoor environment.

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF

Properties of Radon Gas Absorption of Matrix According to Types of Absorbent (흡착재의 종류에 따른 경화체의 라돈가스흡착 특성)

  • Gwon, Oh-Han;Lim, Hyun-Ung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • WHO reported that millions of people die every year because of diseases induced from environmental pollution. In 2012, approximately 7 million people were killed due to air pollution. Major cause of such pollution includes toxin, chemical waste, radiation and air pollution. Therefore, the significance and interest to indoor air quality has been continuously increased. Especially, the interest in radon, the ARC group 1 carcinogen, is rapidly increasing, and banning the use of construction materials that release radon, repairing aged buildings, and developing ventilators. To reduce the level of radon gas was inflowed to indoors and outdoors, this study is to research and develop a radon gas absorption board using absorbents. The absorbents utilized to absorb the radon gas were porous diatomite, natural zeolite, 4A zeolite and 13X zeolite and employed bentonite and illite, montmorillonites with the property of exchanging anions. As the main binder, magnesium oxide was used, with a content of 25% magnesium chloride.

Radon Blocking Effect of Mask used in Everyday Life (일상생활에서 사용하는 마스크의 라돈 차단 효과)

  • Cheon, Se-Hyeon;Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.313-318
    • /
    • 2020
  • Since radon is an inert gas and is a monoatomic molecule, the size of one particle represents the size of an atom, which means that it has a radius of approximately 1 to 100 nm. Therefore, if the mask has a radius smaller than the size of general fine dust and ultra fine dust, but it is possible to block the inhalation of radon more than a certain amount, it is considered that the exposure through the inhalation of radon can be reduced through normal indoor wear. Accordingly, we would like to find out the radon blocking effect of a mask worn in everyday life. Looking at the reduction rate of radon for each mask, cotton masks decreased by 33.45%, medical masks by 33.50%, KF 80 masks by 35.12%, and KF 94 masks by 37.72%. It was found that the radon blocking effect of the cotton and medical masks was somewhat inferior to that of the KF mask, but the difference was not so great that the introduction of radon into the air could be blocked to a certain level by wearing a mask.

The Measurement of Airborne Radon Daughter Concentrations in the Atmosphere (대기중(大氣中) 라돈 붕괴생성물(崩壞生成物)의 공기중(空氣中) 방사능(放射能) 농도(濃度)의 측정(測定))

  • Ha, Chung-Woo;Lee, Jai-Ki;Moon, Philip S.;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.5-13
    • /
    • 1979
  • A simple method for determining the airborne concentration of radon daughter products has been developed, which is based on gross alpha counting of the air filter collections at several time intervals after completion of air sampling. The concentration of each nuclide is then obtained from an equation involving the alpha disintegrations, the sampling time, and the known numerical coefficients. The state of radioactive disequilibrium is also investigated. The atmosphere sampled in the TRIGA Mark-III reactor room was largely in disequilibrium. The extent of radioactive disequilibrium between radon daughter products seems likely depend on sampling times associated with turbulence conditions. The data obtained here will certainly provide useful information on the evaluation of internal exposure and calibration of effluent monitoring instruments.

  • PDF

Measurement of Rn-222 Gas Concentration of Newly Constructed Apartment House in Gwangju Gwangsan-Gu (광주광역시 광산구 소재 신축 아파트 라돈가스 농도 계측)

  • Jang, Hee jun;Lee, Sang bock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.257-261
    • /
    • 2015
  • Radon is produced after the Uranium-238 and thorium-232 undergone radioactive decay process is a colorless, odorless inert gas is stored in a basement or an enclosed space. Building materials are made by a rock or soil materials. Form of radon gas is introduced into the lungs through the respiratory tract and deposited in the lungs or bronchial Daughter nuclides radon causes lung cancer. In this study, To subject the Constructed Apartment in Gwangju Gwangsan-Gu, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at Newly Constructed Apartment is low than United states in the radon concentration in air public 4 pCi called radon gas baseline maximum allowable concentrations. The exposure caused by radon concentration of new construction apartment when on the measurement results is expected to be insignificant. However, when radon gas like this is that it accumulates in the body and lungs get damaged due to exposure, such as lung cancer often open the windows to reduce the radon concentration measurements, such as in radiation protection aspects to the ventilation to reduce exposure it is considered necessary.