• Title/Summary/Keyword: 신호 획득

Search Result 1,348, Processing Time 0.03 seconds

Damage Detecion of CFRP-Laminated Concrete based on a Continuous Self-Sensing Technology (셀프센싱 상시계측 기반 CFRP보강 콘크리트 구조물의 손상검색)

  • Kim, Young-Jin;Park, Seung-Hee;Jin, Kyu-Nam;Lee, Chang-Gil
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper reports a novel structural health monitoring (SHM) technique for detecting de-bonding between a concrete beam and CFRP (Carbon Fiber Reinforced Polymer) sheet that is attached to the concrete surface. To achieve this, a multi-scale actuated sensing system with a self-sensing circuit using piezoelectric active sensors is applied to the CFRP laminated concrete beam structure. In this self-sensing based multi-scale actuated sensing, one scale provides a wide frequency-band structural response from the self-sensed impedance measurements and the other scale provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. To quantify the de-bonding levels, the supervised learning-based statistical pattern recognition was implemented by composing a two-dimensional (2D) plane using the damage indices extracted from the impedance and guided wave features.

Measurement of Local Motional Characteristics of Cilia in Respiratory Epithelium Using Image Analysis (영상 분석 방법을 이용한 점막 세포 섬모의 국소적 운동 특성(CBF)의 정량화에 관한 연구)

  • 이원진;박광석
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 1998
  • By their rapid and periodic actions, the cilia of the human respiratory tract play an important role in clearing inhaled noxious particles. Based on the automated image-processing technique, we studied the method analyzing ciliary beat frequency (CBF) objectively and quantitatively. Microscopic ciliary images were transformed into digitized gray ones through an image-grabber, and from these we extracted signals for CBF. By means of a FFT, maximum peak frequencies were detected as CBFs in each partitioned block for the entire digitized field. With these CBFs, we composed distribution maps visually showing the spatial distribution of CBFs. Through distribution maps of CBF, the whole aspects of CBF changes for cells and the difference of CBF of neighboring cells can be easily measured and detected. Histogram statistics calculated from the user-defined polygonal window can show the local dominant frequency presumed to be the CBF of a cell or a crust the region includes.

  • PDF

Radar Probing of Concrete Specimens Using Frequency Domain Filtering (주파수 영역 필터링을 통한 콘크리트 시편 내부 레이더 탐사)

  • 임홍철;이윤식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.23-29
    • /
    • 2002
  • Radar method can be effective in probing concrete structures damaged by earthquake. Data analysis is usually performed in time domain, by considering time delay of the wave due to the dielectric constant of concrete. In this study, improved data analysis has been performed using signal processing scheme of spectra analysis and filtering. Three antenna with 900MHz, 1㎓, and 1.5㎓ center frequency were used to detect a steel bar or delamination in specimens for obtaining data, Frequency spectrum was filtered in low pass, high pass, and band pass varying cutoff frequency with 1/3 octave in frequency domain. The most effective cutoff frequency for each frequency has been determined as the range for 2 octave lower to 1 octave higher and 2 octave lower to 1 octave lower. This result provided a basis in improving data analysis capability using frequency domain filtering.

Depth-based Correction of Side Scan Sonal Image Data and Segmentation for Seafloor Classification (수심을 고려한 사이드 스캔 소나 자료의 보정 및 해저면 분류를 위한 영상분할)

  • 서상일;김학일;이광훈;김대철
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.133-150
    • /
    • 1997
  • The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.

Terminal Guidance for Aerial Vehicles through Nadir-Looking Image Formation Using an Imaging Radar with a Rotating Antenna (회전하는 안테나를 가진 레이다를 이용하여 비행체 종말 유도를 위한 직하 방향 레이다 영상형성)

  • Lee, Hyukjung;Song, Sungchan;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.328-331
    • /
    • 2019
  • A linear frequency modulated pulse train waveform can be cost-effective in achieving high range resolution, and thus the synthetic aperture radar may be benefited by using the mixer output of the received signal. However, the image formation process from a mixer output is vulnerable to errors caused by stop-and-go approximation. In this paper, a nadir-looking imaging radar based on time domain correlation is proposed. Furthermore, to prevent the occurrence of ghosting effect in images, antenna placement on a rotating disk is proposed. Simulation results indicate that ghosting effect can be eliminated by employing the proposed antenna placement structure.

Recognition of Special Vehicles Using Roof Marks (루프 마크를 이용한 특수차량 인식)

  • Kim, Seok-Young;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.293-296
    • /
    • 2016
  • In case of an emergency on a busy road of a city, drivers should make way for special vehicles such as police cars, fire engines, or ambulance as soon as possible. If road infrastructures recognize the movements of special vehicles, and transfer alert message to traffic signal controllers and normal cars through wireless network such as WAVE or TPEG, normal cars can prepare to make way in advance. As a result, it help special vehicles move faster. In this paper, we install a roof mark on the roof of a special vehicle, detect the mark through a mark recognition algorithm which includes perspective transformation, and get the inner information by decoding the digital pattern on it. The experiment results show that mark can be recognized 100% and 93.3% of inner digital data of the mark can be recognized, when the size of a mark is larger than $88cm{\times}88cm$ and the mark moves at a speed of 50km/s.

  • PDF

Condition Monitoring and Fault Diagnosis System of Rotating Machinery (회전기기의 상태감시 및 결함탐지 시스템)

  • Jeong, Sung-Hak;Lee, Young-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.819-820
    • /
    • 2016
  • Electrical power distribution is consists of high voltage, low voltage and motor control center(MCC). Motor control centers involves turning the motor on and off, it is configured electronic over current relay to detect a motor overcurrent flows. Existing electronic over current relay detects electrical fault such as overcurrent, undercurrent, phase sequence, negative sequence current, current unbalance and earth fault. However, it is difficult to detect mechanical fault such as locked rotor, motor stator and rotor and bearing fault. In this paper, we propose a condition monitoring and fault diagnosis system for electrical and mechanical fault detection of rotating machinery. The proposed system is designed with signal input and control part, system interface part and data acquisition board for condition monitoring and fault diagnosis, it was possible to detect electrical fault and mechanical fault through measurement and control of insulation resistance, locked rotor, MC counter and bearing temperature.

  • PDF

Design of Fresnelet Transform based on Wavelet function for Efficient Analysis of Digital Hologram (디지털 홀로그램의 효율적인 분해를 위한 웨이블릿 함수 기반 프레넬릿 변환의 설계)

  • Seo, Young-Ho;Kim, Jin-Kyum;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In this paper, we propose a Fresnel transform method using various wavelet functions to efficiently decompose digital holograms. After implementing the proposed wavelet function-based Fresnelet transforms, we apply it to the digital hologram and analyze the energy characteristics of the coefficients. The implemented wavelet transform-based Fresnelet transform is well suited for reconstructing and processing holograms which are optically obtained or generated by computer-generated hologram technique. After analyzing the characteristics of the spline function, we discuss wavelet multiresolution analysis method based on it. Through this process, we proposed a transform tool that can effectively decompose fringe patterns generated by optical interference phenomena. We implement Fresnelet transform based on wavelet function with various decomposition properties and show the results of decomposing fringe pattern using it. The results show that the energy distribution of the coefficients is significantly different depending on whether the random phase is included or not.

Adaptive CFAR implementation of UWB radar for collision avoidance in swarm drones of time-varying velocities (군집 비행 드론의 충돌 방지를 위한 UWB 레이다의 속도 감응형 CFAR 최적화 연구)

  • Lee, Sae-Mi;Moon, Min-Jeong;Chun, Hyung-Il;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this paper, Ultra Wide-Band(UWB) radar sensor is employed to detect flying drones and avoid collision in dense clutter environments. UWB signal is preferred when high resolution range measurement is required for moving targets. However, the time varying motion of flying drones may increase clutter noises in return signals and deteriorates the target detection performance, which lead to the performance degradation of anti-collision radars. We adopt a dynamic clutter suppression algorithm to estimate the time-varying distances to the moving drones with enhanced accuracy. A modified Constant False Alarm Rate(CFAR) is developed using an adaptive filter algorithm to suppress clutter while the false detection performance is well maintained. For this purpose, a velocity dependent CFAR algorithm is implemented to eliminate the clutter noise against dynamic target motions. Experiments are performed against flying drones having arbitrary trajectories to verify the performance improvement.

Doppler Spectrum Estimation in a Low Elevation Weather Radar (저고도 기상 레이다에서의 도플러 스펙트럼 추정)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1492-1499
    • /
    • 2020
  • A weather radar system generally shows the weather phenomena related with rainfall and wind velocity. These systems are usually very helpful to monitor the relatively high altitude weather situation for the wide and long range area. However, since the weather hazards due to the strong hail and heavy rainfall occurring locally are observed frequently in recent days, it is important to detect these wether phenomena. For this purpose, it is necessary to detect the fast varying low altitude weather conditions. In this environment, the effect of surface clutter is more evident and the antenna dwell time is much shorter. Therefore, the conventional Doppler spectrum estimation method may cause serious problems. In this paper, the AR(autoregressive) Doppler spectrum estimation methods were applied to solve these problems and the results were analyzed. Applied methods show that improved Doppler spectra can be obtained comparing with the conventional FFT(Fast Fourier Transform) method.