• Title/Summary/Keyword: 신호 제어 시스템

Search Result 2,026, Processing Time 0.027 seconds

A Study on the Robust Double Talk Detector for Acoustic Echo Cancellation System (음향반항 제거 시스템을 위한 강인한 동시통화 검출기에 관한 연구)

  • 백수진;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.121-128
    • /
    • 2003
  • Acoustic Echo Cancellation(m) is very active research topic having many applications like teleconference and hands-free communication and it employs Double Talk Detector(DTD) to indicate whether the near-end speaker is active or not. However. the DTD is very sensitive to the variation of acoustical environment and it sometimes provides wrong information about the near-end speaker. In this paper, we are focusing on the development of robust DTD algorithm which is a basic building block for reliable AEC system. The proposed AEC system consists of delayless subband AEC and narrow-band DTD. Delayless subband AEC has proven to have excellent performance of echo cancellation with a low complexity and high convergence speed. In addition, it solves the signal delay problem in the existing subband AEC. On the other hand, the proposed narrowband DTD is operating on low frequency subband. It can take most advantages from the narrow subband such as a low computational complexity due to the down-sampling and the reliable DTD decision making procedure because of the low-frequency nature of the subband signal. From the simulation results of the proposed narrowband DTD and wideband DTD, we confirm that the proposed DTD outperforms the wideband DTD in a sense of removing possible false decision making about the near-end speaker activity.

The Development of Real Time Automatic Patient Position Correction System during the Radiation Therapy Based on CCD: A Feasibility Study (CCD기반의 방사선치료 중 실시간 자동 환자 위치보정 시스템 개발: 타당성 연구)

  • Shin, Dongho;Chung, Kwangzoo;Kim, Meyoung;Son, Jaeman;Yoon, Myonggeun;Lim, Young Kyung;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.191-197
    • /
    • 2013
  • Upon radiation treatment, it is the important factor to monitor the patient's motion during radiation irradiated, since it can determine whether the treatment is successful. Thus, we have developed the system in which the patient's motion is monitored in real time and moving treatment position can be automatically corrected during radiation irradiation. We have developed the patient's position monitoring system in which the patient's position is three dimensionally identified by using two CCD cameras which are orthogonal located around the isocenter. This system uses the image pattern matching technique using a normalized cross-correlation method. We have developed the system in which trigger signal for beam on and off is generated by quantitatively analyzing the changes in a treatment position through delivery of the images taken from CCD cameras to the computer and the motor of moving couch can be controlled. This system was able to automatically correct a patient's position with the resolution of 0.5 mm or less.

Robust Obstacle Detection and Avoidance Algorithm for Infrastructure-Based Vehicle Communication Under Signal Interference (중계기를 통한 다중 차량 간 통신 상황에서 신호 간섭에 강한 장애물 감지 및 회피 알고리즘)

  • Choi, Byung Chan;Kwon, Hyuk Chan;Son, Jin Hee;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.574-580
    • /
    • 2016
  • In this paper, we will introduce the system that can control multiple vehicles on the road through Single Board Computers and V2I (Vehicle-To-Infrastructure). Also, we will propose the group evasive maneuver decision algorithm, which plays a critical role in deciding whether the vehicles in the system have to conduct evasive maneuvers to avoid obstacles on the road. In order to test this system, we have utilized Wi-Fi and TCP/IP for establishing the communication between multiple vehicles and the relay server, and observed their driving states on the road with obstacles. During the experiments, we have discovered that our original decision algorithm possesses high failure rate when there is frequency interference in ISM (Industrial Scientific Medical) band. In order to reduce this failure rate, we have implemented the data transition detector. This paper will focus on how the use of data transition detector can affect the reliability of the system under the frequency interference of ISM band. If this technology is improved and applied in the field, we will effectively deal with such dangerous situations as multiple collision accidents through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. Furthermore, this can be applied to the autonomous driving technologies. This can be used as the reference data for the development of the similar system.

PAPR Reduction Method of OFDM System Using Fuzzy Theory (Fuzzy 이론을 이용한 OFDM 시스템에서 PAPR 감소 기법)

  • Lee, Dong-Ho;Choi, Jung-Hun;Kim, Nam;Lee, Bong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.715-725
    • /
    • 2010
  • Orthgonal Frequency Division Multiplexing(OFDM) system is effective for the high data rate transmission in the frequency selective fading channel. In this paper we propose PAPR(Peak to Average Power Ratio) reduction method of problem in OFDM system used Fuzzy theory that often control machine. This thesis proposes PAPR reducing method of OFDM system using Fuzzy theory. The advantages for using Fuzzy theory to reduce PAPR are that it is easy to manage the data and embody the hardware, and required smaller amount of operation. Firstly, we proposed simple algorithm that is reconstructed at receiver with transmitted overall PAPR which is reduced PAPR of sub-block using Fuzzy. Although there are some drawbacks that the operation of the system is increased comparing conventional OFDM system and it is needed to send the information about Fuzzy indivisually, it is assured that the performance of the system is enhanced for PAPR reducing. To evaluate the perfomance, the proposed search algorithm is compared with the proposed algorithm in terms of the complementary cumulative distribution function(CCDF) of the PAPR and the computational complexity. As a result of using the QPSK and 16QAM modulation, Fuzzy theory method is more an effective method of reducing 2.3 dB and 3.1 dB PAPR than exiting OFDM system when FFT size(N)=512, and oversampling=4 in the base PR of $10^{-5}$.

The Analysis of Bus Traffic Accident to Support Safe Driving for Bus Drivers (버스운전자 안전운행지원을 위한 교통사고 분석 연구)

  • BHIN, Miyoung;SON, Seulki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.14-26
    • /
    • 2019
  • For bus drivers' safe driving, a policy that analyzes the causes of the drivers' traffic accidents and then assists their safe driving is required. Therefore, the Ministry of Land, Infrastructure and Transport set up its plan to gradually expand the equipping of commercial vehicles with FCWS (Forward Collision Warning System) and LDWS(Lane Departure Warning System), from the driver-supporting ADAS(Advanced Driver Assistance Systems). However, there is not much basic research on the analysis of bus drivers' traffic accidents in Korea. As such, the time is appropriate to research what is the most necessary ADAS for bus drivers going forward to prevent bus accidents. The purpose of this research is to analyze how serious the accidents were in the different bus routes and whether the accidents were repetitive, and to give recommendations on how to support ADAS for buses, as an improvement. A model of ordered logit was used to analyze how serious the accidents were and as a result, vehicle to pedestrian accidents which directly affected individuals were statistically significant in all of the models, and violations of regulations, such as speeding, traffic signal violation and violation of safeguards for passengers, were indicated in common in several models. Therefore, the pedestrian-sensor system and automatic emergency control device for pedestrian should be installed to reduce bus accidents directly affecting persons in the future, and education for drivers and ADAS are to be offered to reduce the violations of regulations.

The Construction Method for Virtual Drone System (가상 드론 시뮬레이터 구축을 위한 시스템 구성)

  • Lee, Taek Hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.124-131
    • /
    • 2017
  • Recently, drone is extending its range of usability. For example, the delivery, agriculture, industry, and entertainment area take advantage of drone mobilities. To control real drones, it needs huge amount of drone control training steps. However, it is risky; falling down, missing, destroying. The virtual drone system can avoid such risks. We reason that what kinds of technologies are required for building the virtual drone system. First, it needs that the virtual drone authoring tool that can assemble drones with the physical restriction in the virtual environment. We suggest that the drone assembly method that can fulfill physical restrictions in the virtual environment. Next, we introduce the virtual drone simulator that can simulate the assembled drone moves physically right in the virtual environment. The simulator produces a high quality rendering results more than 60 frames per second. In addition, we develop the physics engine based on SILS(Software in the loop simulation) framework to perform more realistic drone movement. Last, we suggest the virtual drone controller that can interact with real drone controllers which are commonly used to control real drones. Our virtual drone system earns 7.64/10.0 user satisfaction points on human test: the test is done by one hundred persons.

Enhanced WMAN System based on Region and Time Partitioning D-TDD OFDM Architecture (영역/시간 세분화 D-TDD OFDM 구조에 기반한 새로운 WMAN 시스템 구조 설계)

  • Kim, Mee-Ran;Cheong, Hee-Jeong;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.68-77
    • /
    • 2006
  • In accommodating the asymmetric traffic for future wireless multimedia services, the dynamic time division duplexing (D-TDD) scheme is considered as one of the key solutions. With the D-TDD mode, however, the inter-BS and inter-MS interference is inevitable during the cross time slot (CTS) period, and this interference seriously degrades the system performance. To mitigate such interference, we propose a region and time partitioning D-TDD architecture for OFDM systems. Each time slot in the CTS period is split into several minislots, and then each cell is divided into as many regions as the number of minislots per time slot. We then assign the minislots only to the users in its predefined corresponding region. On top of such architecture which inherently separates the interfering entities farther from each other, we design a robust time slot allocation scheme so that the inter-cell interference can be minimized. By the computer simulation, it has been verified that the proposed scheme outperforms the conventional time slot allocation methods in both the outage probability and the bandwidth efficiency.

The Design of Object-based 3D Audio Broadcasting System (객체기반 3차원 오디오 방송 시스템 설계)

  • 강경옥;장대영;서정일;정대권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.592-602
    • /
    • 2003
  • This paper aims to describe the basic structure of novel object-based 3D audio broadcasting system To overcome current uni-directional audio broadcasting services, the object-based 3D audio broadcasting system is designed for providing the ability to interact with important audio objects as well as realistic 3D effects based on the MPEG-4 standard. The system is composed of 6 sub-modules. The audio input module collects the background sound object, which is recored by 3D microphone, and audio objects, which are recorded by monaural microphone or extracted through source separation method. The sound scene authoring module edits the 3D information of audio objects such as acoustical characteristics, location, directivity and etc. It also defines the final sound scene with a 3D background sound, which is intended to be delievered to a receiving terminal by producer. The encoder module encodes scene descriptors and audio objects for effective transmission. The decoder module extracts scene descriptors and audio objects from decoding received bistreams. The sound scene composition module reconstructs the 3D sound scene with scene descriptors and audio objects. The 3D sound renderer module maximizes the 3D sound effects through adapting the final sound to the listner's acoustical environments. It also receives the user's controls on audio objects and sends them to the scene composition module for changing the sound scene.

Design of C-Band Frequency Up-Converter in Communication System for Unmanned Aerial Vehicle (무인 항공기의 통신 시스템에 사용되는 C-대역 주파수 상향 변환기 설계)

  • Lee, Duck-Hyung;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.843-852
    • /
    • 2009
  • In this paper, we present design, fabrication, and measured results for a frequency upconverter for a wireless communication system of UAV(Unmanned Aerial Vehicle). The specifications of such wireless communication system requires the special features of maximum range of communication as well as deployment in UAV and repairing. The frequency upconverter operating at $5.25{\sim}5.45\;GHz$ in C-band was designed and fabricated considering such special features. The AGC function was included because the required output power should be constant for optimal system operation. The fabricated upconverter showed a constant output power of $+2{\pm}0.5\;dBm$ for the $-15{\sim}-10\;dBm$ input. Spuriouses were below -60 dBc and the adjacent leakage power was below -40 dBc. In addition, LO sources in the upconverter was implemented using the frequency synthesizer with step 1 MHz. This is for the application to the situation where multiple UAVs employed and the possible change of the permitted frequency band. The synthesizer showed a phase noise of -100 dBc/Hz at the 100 kHz frequency offset.

Wired/Wireless LED Lighting Communication Using Reconfigurable Peripheral Unit (재구성형 주변장치유닛을 사용한 유무선 LED 조명 통신)

  • Yoo, Sehoon;Gong, Jungchul;Kim, Kichul
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.407-417
    • /
    • 2013
  • In this paper, a reconfigurable peripheral unit for LED lighting communication is presented. Embedded lighting devices require various communication protocols. Usually, serial communication protocols and lighting control communication protocols such as DALI, DMX512, UART, SPI, IrDA, etc. are used in lighting devices. When the requirements of communication protocols are satisfied with separate IPs, the cost and the power consumption can considerably increase. We propose a reconfigurable communication peripheral unit which uses analysis of signal formats of the protocols. The gate count of the reconfigurable peripheral unit uses only 57% of the gate count of the separate implementation. Also, in this paper, a mapping table based DALI-ZigBee interfacing method for flexible lighting network configurations is proposed. Using this method, various DALI-ZigBee network systems can be easily set up. An LED lighting system platform is implemented to verify the operation of the DALI-ZigBee interfacing method. The reconfigurable peripheral unit and the DALI-ZigBee interfacing method can be efficiently used to implement various wired/wireless lighting communication systems.