• Title/Summary/Keyword: 신축이음부

Search Result 31, Processing Time 0.023 seconds

Extraction of Expansion Length for Expansion Jiont Bridge using Imagery (영상을 이용한 교량 신축이음부의 신축량 추출)

  • Seo, Dong-Ju;Kim, Ga-Ya
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.139-149
    • /
    • 2008
  • A load effect by vehicles running on a road and an increase of traffic is distinguished as a serious issue in the level of bridges' maintenance and management since it causes a quick damage of bridges. The expansion joint is the most important since it makes vehicles' traveling amicable and stress or additional load harmful to molding patterns minimized. However, it is very difficult to measure its expansion length since vehicles continue to pass on the expansion joint. Therefore, the study could see that it was possible to carry out a qualitative and quantitative maintenance and management if its expansion length is extracted with images. The study could acquire three dimensional coordinates of expansion joints with images. As the results of calculating RMSE of check point residual at 32 points in A area and at 28 points in B area, both A and B areas had very good results of RMSEsms 0.829mm~1.680mm. As the results of analyzing expansion length and immediate value extracted by images, the study analyzed that RMSE of A area was 0.64mm and RMSE of B area was 0.28. The average residual of A area was 0.60% and the average rresidual of B area was 0.27%. Therefore, it is judged that it is more scientific and efficient than the past to measure expansion length with images at the time of repairing and managing bridges in the future.

  • PDF

Vibration Control of Structures Using Viscoelastic Dampers Installed in Expansion Joints (신축이음부에 설치된 점탄성감쇠를 이용한 구조물의 진동제어)

  • Kim, Jin-Koo;Ryou, Jin-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.33-42
    • /
    • 2004
  • The usual practice of placing viscoelastic dampers (VED) in the inter-story of building structures frequently interfere with spatial planning and obstruct internal view. These shortcomings can be overcome by installing VED in seismic joints or in expansion joints which are usually hidden under a cover. This study investigates the effect of installing VED in seismic joints to reduce earthquake-induced dynamic reponses. Parametric studies were conducted using 3-DOF systems connected by VED and subjected to earthquake excitations to investigate the effectiveness of the proposed scheme. Nonlinear dynamic analyses were carried out with five-story structures composed of different structure systems and connected by seismic joints. According to the analysis results the use of VED in seismic joints turned out to be effective as long as the natural frequencies of the connected structures are different enough.

Durability Evaluation of a Buried Expansion Joint of Buried Folding Lattice Type (BFL형의 매설형 신축이음장치의 내구성 평가)

  • Jwa, Yong-Hyun;Park, Sang-Yeol;Kim, Seok-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-20
    • /
    • 2011
  • Most of domestic expansion joint system was applied by exposed expansion joint system. There are cases where it is damaged by driving. As the result noise and impact happened, and the social cost due to frequent repair works is increasing. So based on the Asphalt Plug Joint(APJ) system that applied in the United States and Europe, new buried expansion joint system was lately developed a system of Buried Folding Lattice Joint(BFLJ) that changed substructure. In this research, we have tested for durability and flexibility performance of buried expansion joint system that based on the type of asphalt mixture. Also we have evaluated for durability of BFLJ system against vehicle load using accelerated pavement testing. As a result of the experiment, the developed BFLJ system gives high flexibility performance and resolves transformation concentration along the joint section more than APJ system. Also it could be seen that the BFLJ system could overcome the disadvantages of APJ and prevent early damage. Because surface deflection of BFLJ system against vehicle load was measured low, and sub system in the buried expansion joint system was not damaged against vehicle load.

Performance Evaluation of a New Buried Expansion Joint (새로운 매설형 신축이음장치의 성능 평가)

  • Hong, Seong-Hyeop;Park, Sang-Yeol;Jwa, Yong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • Asphalt Plug Joint(APJ) is an buried expansion joint that enabling the smooth connection of expansion gap and road pavement by filling the gap with bituminous mixture of 20% bitumen and 80% aggregate by weight, so it secures evenness and expansion or contraction using the material's properties. Although APJ is designed to have a 6-7 year lifecycle, there are some cases where it is damaged within the first six months. This early damage cause traffic congestion due to frequent repair works, and social cost exceeding the installation cost of the joint. So, in this research, we have developed a new system of Buried Folding Lattice Joint(BFLJ) which can overcome the disadvantages of APJ, and have analyzed and compared it's performance with the conventional APJ through experiment with specimens. As a result of the experiment, APJ had crack formation on both ends of the gap plate, spreading to the surface of the expansion joint. With this result, we can conclude that the reason for early damage is the tension failure due to the concentration of strain in the asphalt mixture along the end of gap plate and the debonding along the joint section. In contrast, the newly developed BFLJ induced even transformation in the joint by applying moving stud and high performance material, and resolved APJ's disadvantage of strain concentration. Therefore, it could be seen that the newly developed BFLJ could overcome the disadvantages of APJ and prevent early damage.

A Study on Behavior of Post-integrated Abutment Bridge When Abutment and Bridge Decks are Jammed (교대 협착 발생 시 무조인트화 교량의 거동 분석 연구)

  • Park, Yang Heum;Nam, Moon S.;Jang, Il Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.31-35
    • /
    • 2021
  • The expansion joints installed on the bridge for the accommodation of expansion and contraction of the supper structure are essential members of the bridge. However, the expansion joints are deteriorated over time and the waterproof function weakens, causing rainwater to penetrate and deteriorate the structure. In order to solve the traffic congestion caused by frequent replacement of the old expansion joints along with the deterioration of the structure, a post-integrated abutment bridge in which the existing expansion joints are removed and replaced with reinforced concrete link connection has been applied to highway bridges since 2016. After the post-integrated abutment method was applied, it was partially applied to bridges in which the superstructure and abutment were jammed. In this study, the causes of problems that may occur when the post-integrated abutment method is applied to the jammed bridge were analyzed numerically. It was analyzed that damage occurred in the link connection part. Based on the results of this study, the application condition for the post-integrated abutment method is reinforced as it is not possible to apply the post-integrated abutment method to bridges are already jammed.

An Experiment of Structural Performance of Expansion Joint with Rotation Finger (가변형 핑거 조인트를 가지는 신축이음장치의 구조 성능 실험)

  • Yoo, Sung won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.170-175
    • /
    • 2018
  • For the seismic performance, it is necessary to prevent the destruction of the expansion joint device due to the appropriate deformation of the expansion joint device due to the seismic force. Recently, the hinge is installed on the fingering of the expansion joint device in Korea, New products are being developed. In this paper, we have experimentally evaluated the real scale resistance of the expansion joints with rotational finger joints against load at right angle to the bridge axis. Experimental results show that the maximum horizontal displacement is about 21.1mm for conventional stretch joints and 51.00mm for seismic stretch joints. It is presumed that the existing expansion joint test specimen is resistant to the load in a direction perpendicular to the throat axis, and then the bending and shear deformation of the finger are excessively generated and the fracture phenomenon is likely to occur. On the other hand, in the case of the seismic expansion joint, the deformation of the load due to the load is absorbed by the hinge of the finger with respect to the load in the direction perpendicular to the throat, so that only horizontal deformation in the direction of load action.

A Study for Lifetime Predition of Expansion Joint Using HILS (HILS 기법을 적용한 신축관 이음 수명예측에 관한 연구)

  • Oh, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.138-142
    • /
    • 2018
  • This study used HILS to test an expansion joint, which is vulnerable to the water hammer effect. The operation data for the HIL simulator was the length rate of the expansion joint by the water hammer, which was used for life prediction based on the vibration durability. For the vibration durability test, the internal pressure of the expansion joint was assumed to be a factor of the durability life, and the lifetime prediction model equation was obtained by curve fitting the lifetime data at each pressure. During the test, the major failure modes of crack and water leakage occurred on the surface of the bellows part. The lifetime prediction model typically follows an inverse power law model. The pressure is a stress factor, and the model is effective in only a specific environment. Therefore, another stress factor such as temperature will be added and considered for a mixed lifetime prediction model in the future.

Application of Structural Fuse Concept to Bridge Joint Design (교량의 이음부 설계를 위한 구조적 퓨즈 개념의 적용)

  • Lee, Jung Whee
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.18 no.4
    • /
    • pp.77-82
    • /
    • 2014
  • 본 기사는 교량의 이음부(joint) 설계를 위한 새로운 구조적 퓨즈 개념을 다루고 있다. 제안하는 개념은 경제성, 명확한 하중경로, 그리고 지진 후 보수의 용이성 등을 포함한 여러 가지 장점을 가지고 있다. 기본적인 아이디어는 평상시의 사용 상태에서는 탄성거동을 할 수 있을 정도로 강하지만 동시에 주요 지진이 발생하였을 때는 파괴될 수 있을 정도로 약한 구조적 퓨즈를 설계하여 지진에너지가 퓨즈를 통과하지 못하도록 하겠다는 것이다. 두 가지의 대표적인 프로젝트를 소개하여 구조적 퓨즈의 개념이 실무에 어떻게 성공적으로 적용될 수 있었는지 보이고자 한다.

  • PDF

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change (수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구)

  • Kim, Woo-young;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.733-740
    • /
    • 2017
  • 'The facilities standards of water supply' issued by the Ministry of Environment in 2004 indicates that expansion joints cannot be used in welding water supply steel pipes. However, their reason is not clear and it is difficult to confirm the stability of the steel pipe for a water supply pipeline. The purpose of this study is to determine whether or not an expansion joint is necessary to improve the stability of water supply in steel pipe through a displacement analysis of the pipework. The test results are as follows. Firstly, it was found that expansion and contraction of the water supply steel pipe (D 2,400 mm) occur repeatedly in 4 cycles per year, and the maximum expansion and contraction amount of the pipe is 13.03 mm in 1.24 km pipelines. Secondly, the thermal stress caused by expansion and contraction of the steel pipe is $13.7{\sim}36.1kgf/cm^2$ according to the burial depth (0~4 m). The main comparison factors to determine the stability of the steel pipe (STWW 400) were the allowable tensile strength and the fatigue limit, which were computed to be $4,100kgf/cm^2$ and $1,840kgf/cm^2$, respectively. Finally, the thermal stress of the steel pipe is very small compared to the allowable tensile stress and fatigue stress. Therefore, thermal stress does not affect the stability of the steel pipe, although the expansion and contraction of the steel pipe occurs by temperature changes. In conclusion, the study demonstrated that expansion joints are not required in water supply steel pipelines.