• Title/Summary/Keyword: 신축성 센서

Search Result 29, Processing Time 0.022 seconds

Imperceptible On-Skin Sensor Devices for Musculoskeletal Monitoring and Rehabilitation (상시 근골격 모니터링과 재활을 위한 온스킨 센서 디바이스 기술)

  • Park, C.W.;Koo, J.B.;Jin, H.;Kim, Y.;Lim, C.;Hong, C.H.;Kim, H.J.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.30-41
    • /
    • 2022
  • As the society is superaging, the number of patients with movement disabilities due to musculoskeletal or nervous system illness is rapidly increasing. To improve public health and reduce medical expenses, it is essential to develop rehabilitation systems that allow patients to resume their daily-life activities. However, the existing musculoskeletal illness diagnosis and rehabilitation method is limited in terms of precision and efficiency because it is based on an empirical diagnosis and prescription without regard for individual characteristics. To overcome these limits, it is critical to design a novel concept of routine rehabilitation therapy device that is capable of inducing musculoskeletal balance by the precise analysis of musculoskeletal usage patterns via the motion and the muscle activity tracking of linked muscles. This study introduces the trend of on-skin sensor device technology for routine musculoskeletal monitoring and therapy. For on-skin rehabilitation systems, skin-adhesive and stretchable motion/posture, electromyography, pressure sensors, small-size and low-power wireless sensor interfaces, and user-friendly rehabilitation contents based on new algorithms are combined.

Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers (폴리우레탄 기반 복합 섬유의 기계적, 전기적 특성)

  • Jang, Hoyoung;Lee, Hyeon-Jong;Suk, Ji Won
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.50-54
    • /
    • 2020
  • Soft robotics and wearable devices require large motions and flexibility. In this regard, there is a demand for developing stretchable strain sensors which can be attached to the soft robots and wearable devices. In this work, we fabricated stretchable and electrically conductive composite fibers by combining polyurethane (PU) and silver nanoflowers (AgNFs). The PU/AgNF composite fibers showed the change of the resistance as a function of the applied strain, demonstrating the potential for stretchable strain sensors in soft robotics and wearable devices. The mechanical and electrical characteristics of the composite fibers were measured and analyzed to use the composite fibers for stretchable strain sensors.

Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids (그래핀/탄소나노섬유 코팅된 3D 프린팅 고분자 구조를 이용한 신축성 스트레인 센서)

  • Na, Seung Chan;Lee, Hyeon-Jong;Lim, TaeGyeong;Yun, Jeongmin;Suk, Ji Won
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.283-287
    • /
    • 2022
  • Stretchable strain sensors have been developed for potential future applications including wearable devices and health monitoring. For practical implementation of stretchable strain sensors, their stability and repeatability are one of the important aspects to be considered. In this work, we utilized 3D printed polymer structures having kirigami patterns to improve the stretchability and reduce the hysteresis. The polymer structures were coated with graphene/carbon nanofiber hybrids to make a robust electrical network. The stretchable strain sensors showed a high gauge of 36 at a strain of 32%. Because of the kirigami structures and the robust graphene/carbon nanofiber coating, the sensors also exhibited stable resistance responses at various strains ranging from 1% to 30%.

Non-Contact Sensing Method using PT Symmetric Circuit with Cross-Coupled NDR Circuits (크로스-결합구조의 부성 미분 저항 회로를 이용한 페리티-시간 대칭 구조의 비접촉 센서 구동 회로에 대한 연구)

  • Hong, Jong-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.10-16
    • /
    • 2021
  • This paper proposes a model that considers the parity-time symmetric structure as a state detection circuit for sensor applications using a stretchable inductor. In particular, to obtain a more practical computer simulation result, the stretchable inductor model was applied to this study model by referring to previously reported experimental results. The resistance component and phase component were controlled through the negative differential resistance circuit used in this study. In addition, the imbalance of the circuit caused by a change in the characteristics of the stretchable inductor could be compensated for using a negative differential resistance circuit. In particular, an analysis of the frequency characteristics of the sensor driving circuit of the parity-time symmetric structure proposed in this study confirmed that the Q-factor could be increased up to 20 times compared to the conventional resonant circuit.

Preparation and Property of Flexible/Stretchable Electrodes (유연성/신축성 전극의 제조 및 특성)

  • Lee, Gi-Bbeum;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.272-281
    • /
    • 2012
  • Flexible/stretchable electronics have recently focused, since their applications extend to emerging flexible displays, sensors, dielectric elastomer actuator and generators, and smart surgical tools. Flexible/stretchable electrodes should be synchronized with employing mechanical deformations of either flexing or stretching modes. Thus, the research area is one of the tough subjects, since the electrodes should keep their basic functions of electrodes under various mode of mechanical deformations. In this review, we discuss the recent development in the preparation and properties of such flexible/stretchable electrodes.

Mechanical and Optical Characteristics of Transparent Stretchable Hybrid Substrate using PDMS and Ecoflex Material (PDMS-Ecoflex 하이브리드 소재를 이용한 투명 신축성 기판의 기계적 및 광학적 특성)

  • Lee, Won Jae;Park, So-Yeon;Nam, Hyun Jin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.129-135
    • /
    • 2018
  • In the stretchable electronic devices, the stretchable substrate is a very essential material which determines the stretchability, performances and durability of the stretchable electronic devices. In particular, the current stretchable materials have hysteresis making difficult to used as sensors and other electronic devices. In this study, we developed a PDMS-Ecoflex hybrid stretchable substrate mixed with PDMS and Ecoflex material in order to increase stretchability and improve hysteresis characteristics. Mechanical behavior of the hybrid substrate was evaluated using a tensile test, and optical transmittance of the hybrid substrate was also measured. As the content of Ecoflex increases, the PDMS-Ecoflex hybrid substrate becomes more flexible, and the elastic modulus decreases. In addition, the PDMS substrate failed a tensile strain of 270%, while the PDMS-Ecoflex hybrid substrate did not fail even at 500% strain indicating excellent stretchability. In the repeated tensile test, the hybrid substrate with 2:1 mixing ratio of PDMS and Ecoflex showed hysteresis. On the other hand, in the case of the hybrid substrate with the mixing ratio of 1:1, hysteresis did not occur at a strain of 50% and 100%. Hence, we developed a stretchable substrate with over 150% stretchability and no hysteresis characteristics. The optical transmittance of the Ecoflex substrate was 68.6%, whereas the transmittances of the hybrid substrate with mixing ratio of 2:1 and 1:1 were 78.6% and 75.4%, respectively. These results indicate that the PDMS-Ecoflex hybrid substrate is a potential candidate for a transparent stretchable substrate.

Stretchable Electronic Devices for Wearable Diagnosis and Rehabilitation Applications (웨어러블 진단 및 재활 응용을 위한 신축성 전자소자 기술)

  • Park, C.W.;Koo, J.B.;Lee, J.I.;Park, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.48-57
    • /
    • 2019
  • As the super-aged society approaches rapidly, the number of people suffering from post-stroke and other neurological disorders is significantly increasing, where prompt and intensive rehabilitation is essential for such people to resume their physical activities in normal daily lives. To overcome the inherent limitations of manual physical therapy, various types of exoskeleton robots are being employed. However, the need of the hour is softer, thinner, lighter, and even stretchable systems for precisely monitoring the motion of each joint without restricting the patients' movements in rehabilitation tasks. In this paper, we discuss the technological trends and current status of emerging stretchable rehabilitation systems, in which sensors, interconnects, and signal-processing circuits are monolithically integrated within a single stretchable substrate attachable to the skin. Such skin-like stretchable rehabilitation devices are expected to provide much more convenient, user-friendly, and motivating rehabilitation to patients with neurological impairments.

Fabrication of flexible sponge electrodes using Ag nanowires (은나노와이어 함침 유연 스펀지 전극 제조)

  • Park, Kyoung Ryeol;Yoo, Sehoon;Ryu, Jeong Ho;Mhin, Sungwook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.189-193
    • /
    • 2020
  • Recently, various methods for preparing a flexible electrode for implementing a wearable sensor have been introduced. Wearable sensors show similar tendency to use various polymer substrates, which provides elasticity suitable to the motion of human body. In this paper, a highly elastic silver nanowire based electrode was prepared on a sponge-based stretchable substrate, and electrical properties were evaluated. Silver nanowires were grown using a wet chemical synthesis, impregnated into a plasma-treated sponge, and then heat treated at a low temperature. In particular, the plasma surface treatment of the sponge enables uniform coating of silver nanowires. The flexible sponge electrode showed reliable electrical resistance changes over 160 repeated tensile-compression cycles.