• Title/Summary/Keyword: 신용대출

Search Result 93, Processing Time 0.026 seconds

Soft Information and Government Loan Approval (연성정보와 정책자금 대출결정 요인 분석)

  • Yoo, Shi-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3768-3774
    • /
    • 2009
  • This paper explored how soft information and hard information were used when SBC(Small Business Corporation, Korea) reviewed government loan applications. The data set is made up of financial and non-financial data of small-business firms since 2004. A non-financial data set is considered as soft information. Relative importance of three kinds information such as credit information, soft information, financial information is compared with each other by using the logit model. As a result, credit information is most critical to the loan approval, and then soft information follows, lastly financial information has the smallest effect on the loan approval. This is because the credit information is made up of the non-linear combination of soft information and financial information. When the relative importance of soft information and financial information is considered, soft information is relatively more critical to the loan approval then financial information. This is because financial ratios provided by small-business firms are not reliable enough.

Detecting Credit Loan Fraud Based on Individual-Level Utility (개인별 유틸리티에 기반한 신용 대출 사기 탐지)

  • Choi, Keunho;Kim, Gunwoo;Suh, Yongmoo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.79-95
    • /
    • 2012
  • As credit loan products significantly increase in most financial institutions, the number of fraudulent transactions is also growing rapidly. Therefore, to manage the financial risks successfully, the financial institutions should reinforce the qualifications for a loan and augment the ability to detect a credit loan fraud proactively. In the process of building a classification model to detect credit loan frauds, utility from classification results (i.e., benefits from correct prediction and costs from incorrect prediction) is more important than the accuracy rate of classification. The objective of this paper is to propose a new approach to building a classification model for detecting credit loan fraud based on an individual-level utility. Experimental results show that the model comes up with higher utility than the fraud detection models which do not take into account the individual-level utility concept. Also, it is shown that the individual-level utility computed by the model is more accurate than the mean-level utility computed by other models, in both opportunity utility and cash flow perspectives. We provide diverse views on the experimental results from both perspectives.

Analysis of Loan Comparison Platform User's Default Risk (대출중개 플랫폼별 고객의 채무불이행 리스크 비교)

  • SeongWoo Lee;Yeonkook J. Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • In recent years, there has been a significant growth in loan comparson services offered by fintech platforms in South Korea. However, it has been reported that loan comparison platform users tend to have a higher risk of default compared to non-users. This paper investigates the difference in platform-specific credit risk factors using survival analysis models - Kaplan-Meier curves and Accelerated Failure Time (AFT) model. Our findings show that, relative to non-users, users of loan comparison platforms are characterized by elevated default rates, a greater propensity for home ownership, lower credit scores, and shorter loan durations. Furthermore, our AFT models elucidate the variance in default risk among the various loan comparison service platforms, highlighting the imperative for customized strategies that address the unique risk profiles of customers on each platform.

기업신용평가 자문을 위한 전문가시스템의 개발

  • 황하진;구계월
    • The Journal of Information Systems
    • /
    • v.6 no.1
    • /
    • pp.63-79
    • /
    • 1997
  • 최근 들어 급격하게 변화하는 금융환경과 우수고객을 확보하려는 금융기관의 치열 해짐에 따라 금융기관의 대출업무의 전문성과 중요성이 더욱 증대되고 있다. 본 연구에서는 대출 업무에 있어 복잡하고 전문적인 지식이 요구되는 기업신용평가 과정에 전문가시스템을 적용하여 이를 실제 상황에 활용하여 봄으로써 대출 의사결정과정의 정확성과 신뢰성을 증 가시키고자 하는데 초점을 맞추고 있다. 실제적용을 위하여 25개의 중소/대기업으로 데이터 를 수집, 적용하여 시스템을 평가하였다.

  • PDF

Information Asymmetry Issues in Online Lending : A Case Study of P2P Lending Site (인터넷 대부시장에서의 정보비대칭성 문제 : P2P 금융회사 사례를 중심으로)

  • Yoo, Byung-Joon;Jeon, Seong-Min;Do, Hyun-Myung
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.285-301
    • /
    • 2010
  • Peer-to-peer (P2P) lending is an open marketplace for loans not from bank but from individuals online. Financial transactions are facilitated directly between individuals ("peers") without any intermediation of a traditional financial institution. A market study by renowned research company forecasts that P2P lending will grow very fast and a couple of P2P lending sites in Korea also are getting attentions by providing the alternative financial services. In P2P lending market, Lender will enjoy higher income generated from the loans in the form of interest than interest that can be earned by financial products provided by official financial institutions. Furthermore, lenders are able to decide who they would lend the money for themselves. Meanwhile, borrowers with low credit scores are able to finance their liquidity requirement with low cost and convenient access to the Internet. The objective of this paper is to introduce P2P lending and its issues of information asymmetry. We provide the insights from the case study of one of P2P lending sites in Korea and review the issues in P2P lending market as research topics. Specifically, information asymmetry issues in both traditional financial institutions and P2P lending are discussed.

정책자금정보 - 2013년도 중소기업 정책자금 지원 안내

  • 한국광학기기협회
    • The Optical Journal
    • /
    • s.143
    • /
    • pp.78-85
    • /
    • 2013
  • 올해 중소기업 정책자금 지원규모는 3조 8500억 원으로 지난해 3조 3330억 원에서 15.5% 증가한다. 중소기업청과 중소기업진흥공단은 정책자금의 우선순위를 일자리 창출에 두고 민간금융기관을 통해 자금 조달이 어려운 창업자와 기술개발기업에 전체 정책자금의 40.3%인 1조 5500억 원을 배분한다. 이에 창업기업지원자금이 지난해보다 200억 원, 개발기술사업화자금이 420억 원 늘어나며, 정책자금을 지원받은 기업이 일자리를 1명씩 늘릴 때마다 0.1%포인트씩 최대 1%포인트까지 금리를 인하해 일자리 창출 효과를 극대화 한다는 계획이다. 또한 중진공을 통한 직접 대출 비중이 기존 55%에서 70%로 확대되며, 개발기술사업화자금, 수출금융, 소공인 특화자금은 전액 직접대출로 운영되고 운전자금에 대한 보증서부 대출은 폐지된다. 반면 신용대출 규모는 20% 늘어나 중소기업의 담보 부담이 줄어들 전망이다. 변화하는 산업 구조에 맞춰 정책자금 구조도 바뀐다. 담보력이 부족한 창업 및 소기업의 자금 지원을 위해 기계기구, 재고자산, 매출채권의 담보 인정비율을 높인다. 하반기 중에는 지식재산권 담보대출이 새로 도입된다. 별도의 기술가치 평가 모형을 통해 특허기술의 경제적 가치를 평가하고 특허권을 담보로 대출을 시행한다. 자세한 사항 및 정책자금 신청 희망기업은 중소기업진흥공단 홈페이지(www.sbc.or.kr) '정책자금 융자도우미'를 통해 신청요건 및 추천자금 등을 자가진단 후 신청하면 된다.

  • PDF

A Study on the Factors of Normal Repayment of Financial Debt Delinquents (국내 연체경험자의 정상변제 요인에 관한 연구)

  • Sungmin Choi;Hoyoung Kim
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.69-91
    • /
    • 2021
  • Credit Bureaus in Korea commonly use financial transaction information of the past and present time for calculating an individual's credit scores. Compared to other rating factors, the repayment history information accounts for a larger weights on credit scores. Accordingly, despite full redemption of overdue payments, late payment history is reflected negatively for the assessment of credit scores for certain period of the time. An individual with debt delinquency can be classified into two groups; (1) the individuals who have faithfully paid off theirs overdue debts(Normal Repayment), and (2) those who have not and as differences of creditworthiness between these two groups do exist, it needs to grant relatively higher credit scores to the former individuals with normal repayment. This study is designed to analyze the factors of normal repayment of Korean financial debt delinquents based on credit information of personal loan, overdue payments, redemption from Korea Credit Information Services. As a result of the analysis, the number of overdue and the type of personal loan and delinquency were identified as significant variables affecting normal repayment and among applied methodologies, neural network models suggested the highest classification accuracy. The findings of this study are expected to improve the performance of individual credit scoring model by identifying the factors affecting normal repayment of a financial debt delinquent.

The Effectiveness of Customer Scoring System in Bank Marketing -Focusing Credit and Profitability- (금융마케팅에서 고객평점제도의 효과성 -신용 및 수익성을 중심으로-)

  • Myung-Sik Lee
    • Asia Marketing Journal
    • /
    • v.1 no.2
    • /
    • pp.56-76
    • /
    • 1999
  • 금융시장에서의 경쟁이 치열해지면서 이제 국내 소비자금융기관들에게 수익성위주의 내실경영은 피할 수 없는 지상과제로 부상하고 있다. 이러한 목표를 성취하기 위해서는 우량고객을 위주로 한 기반강화와 철저한 사후관리를 통한 수익성향상이 이루어져야 한다. 특히, 자금운용처로 부상하고있는 개인고객들을 대상으로 하는 효과적인 대출마케팅의 수행은 소매금융기관들의 수익성제고에 절대적이라고 할 수 있다. 즉, 수익성을 지향하기 위해서는 고객관리를 보다 더 철저하게 하여야 하며 이를 위해서는 신용 및 수익성에 근거해서 산출된 평점에 따라 개인별 관리를 차별화하는데 있다고 할 수 있다. 본 연구에서는 우량고객들을 대상으로 대출마케팅을 활성화시키기 위한 고객평점모형의 효과성에 대해서 고찰해 보고자 하였다. 이를 위해서 신용평점모형에 대해서 자세히 알아보고 이어서 수익성에 근거한 평점모형에 대해서도 이론적으로 살펴보았다. 그리고 두 모형의 효과성을 비교하기 위해서 판별분석을 사용하여 우량 및 불량고객에 대한 예측력을 분석해 보았다. 분석결과 제1종오차에 대해서는 신용평점모형이, 제2종 오차에 대해서는 수익성평점모형이 보다 정교한 예측력을 나타냈다. 결론적으로 두 모형의 사용이 병행되는 통합적인 고객평점모형의 적용이 제안되어 졌다.

  • PDF

Research on Sustainable Financial Inclusion and Social Impact : Analyzing Credit Thin Filer Data from U.S. Online Loan Platform (지속가능한 금융포용성과 소셜임팩트 증진 제언 연구: 미국 온라인 대출 플랫폼 내 중저신용자 데이터를 중심으로)

  • Geonuk Nam;Jiho Kim;Gaeun Son;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.467-474
    • /
    • 2024
  • This study analyses customer data from a US online lending platform to empirically document the discriminatory treatment that low- and middle-income borrowers face in financial markets. Researchers are using financial data from nearly 2.93 million loans between 2007~2020 of the Lending Club on the open-source Kaggle platform. We find that thin-filers borrowers, especially those with lower credit scores, receive loans at higher interest rates. This discriminatory treatment undermines financial inclusion and has the potential to increase social inequality. The significance of this research is that it sheds substantial light on the problem of inequality in financial markets and, based on the findings, suggests concrete measures to ensure equitable access to finance for all customers and enhance sustainable financial inclusion. In doing so, we propose a shift towards enhancing the social responsibility of institutions.