• Title/Summary/Keyword: 신뢰도공학

Search Result 934, Processing Time 0.024 seconds

Derivation of Important Factors the Resilience of Purchased Land in the Riparian Zone Using AHP Analysis (AHP분석을 활용한 수변구역 매수토지의 회복탄력성 중요인자 도출)

  • Back, Seung-Jun;Lee, Chan;Jang, Jae-Hoon;Kang, Hyun-Kyung;Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.387-397
    • /
    • 2021
  • This study aims to present reference data necessary for developing evaluation indicators to analyze the actual resilience of purchased land by investigating the factors that affect the restoration of the purchased land in the riparian zone and quantitatively calculating its importance. The main results are as follows. Firstly, this study identified 34 potential resilience factors through a literature review encompassing domestic and overseas studies and derived seven ecological responsiveness factors, six physical responsiveness factors, and four managerial responsiveness factors through the Delphi survey. Secondly, reliability analysis and Analytic Hierarchy Process (AHP) analysis derived the following important factors: structural stability of the vegetation restored in the purchased land, species diversity of wildlife, structural stability of wildlife, the size of restored wetland after purchase, number of plant species, and the land cover status adjacent to the purchased land. The study results are expected to be helpful information for ecological restoration and management plans reflecting reinforcing factors for resilience at each stage of land purchase, restoration, and management.

A Study on the Expansion of Workflow for the Collection of Surface Web-based OSINT(Open Source Intelligence) (표면 웹기반 공개정보 수집을 위한 워크플로우 확장 연구)

  • Lee, SuGyeong;Choi, Eunjung;Kim, Jiyeon;Lee, Insoo;Lee, Seunghoon;Kim, Myuhngjoo
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.367-376
    • /
    • 2022
  • In traditional criminal cases, there is a limit to information collection because information on the subject of investigation is provided only with personal information held by the national organization of legal. Surface web-based OSINT(Open Source Intelligence), including SNS and portal sites that can be searched by general search engines, can be used for meaningful profiling for criminal investigations. The Korean-style OSINT workflow can effectively profile based on OSINT, but in the case of individuals, OSINT that can be collected is limited because it begins with "name", and the reliability is limited, such as collecting information of the persons with the same name. In order to overcome these limitations, this paper defines information related to individuals, i.e., equivalent information, and enables efficient and accurate information collection based on this. Therefore, we present an improved workflow that can extract information related to a specific person, ie., equivalent information, from OSINT. For this purpose, different workflows are presented according to the person's profile. Through this, effective profiling of a person (individuals) is possible, thereby increasing reliability in collecting investigation information. According to this study, in the future, by developing a system that can automate the analysis process of information collected using artificial intelligence technology, it can lay the foundation for the use of OSINT in criminal investigations and contribute to diversification of investigation methods.

A Prediction of N-value Using Regression Analysis Based on Data Augmentation (데이터 증강 기반 회귀분석을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Lee, Jae Beom;Park, Chan Jin
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.221-239
    • /
    • 2022
  • Unknown geotechnical characteristics are key challenges in the design of piles for the plant, civil and building works. Although the N-values which were read through the standard penetration test are important, those N-values of the whole area are not likely acquired in common practice. In this study, the N-value is predicted by means of regression analysis with artificial intelligence (AI). Big data is important to improve learning performance of AI, so circular augmentation method is applied to build up the big data at the current study. The optimal model was chosen among applied AI algorithms, such as artificial neural network, decision tree and auto machine learning. To select optimal model among the above three AI algorithms is to minimize the margin of error. To evaluate the method, actual data and predicted data of six performed projects in Poland, Indonesia and Malaysia were compared. As a result of this study, the AI prediction of this method is proven to be reliable. Therefore, it is realized that the geotechnical characteristics of non-boring points were predictable and the optimal arrangement of structure could be achieved utilizing three dimensional N-value distribution map.

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.

A Study on the Application Method of Artificial Injection Test according to the Hydraulic Conductivity of Aquifer (대수층 수리지질특성에 따른 인공함양시험 적용 방법에 관한 연구)

  • Chae, Dong-Seok;Choi, Jin-O;Jeong, Hyeon-Cheol;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.589-601
    • /
    • 2021
  • Artificial recharge technology is a method for solving problems such as groundwater level drop and ground subsidence caused by groundwater withdrawal. This study investigated the applicability of using the hydraulic conductivity of an aquifer to predict injection test results for aquifer restoration. Pumping and injection tests were performed under the same conditions as those for the artificial injection facility located in Icheon, Gyeonggi-do. The hydraulic conductivity of the aquifer, which plays a decisive role in restoring the groundwater level, was derived from the pumping test. A numerical model of a simplified on-site aquifer was constructed, and a transient analysis was applied with the same conditions as the pumping test. The correlation between the measured and the resulting model values is strong (R2 = 0.78). The injection test was performed in a sedimentary layer composed of silt sand and clay sand. From the results of the injection test, an empirical formula was derived using Theim's formula, which is a common well analysis solution to determine the parameters of the aquifer from time-level data. The model values from the empirical formula have a high degree of correlation (R2 = 0.99) with measured values. Under specific conditions, for areas where it is difficult to conduct an injection test, the formula from this study, which relies on the hydraulic conductivity of the aquifer determined through the pumping test, may be used to predict reliable injection rates for groundwater restoration.

Preliminary Uncertainty Analysis to Build a Data-Driven Prediction Model for Water Quality in Paldang Dam (팔당댐 유역의 데이터 기반 수질 예측 모형 구성을 위한 사전 불확실성 분석)

  • Lee, Eun Jeong;Keum, Ho Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 2022
  • For water quality management, it is necessary to continuously improve the forecasting by analyzing the past water quality, and a Data-driven model is emerging as an alternative. Because the Data-driven model is built based on a wide range of data, it is essential to apply the correlation analysis method for the combination of input variables to obtain more reliable results. In this study, the Gamma Test was applied as a preceding step to build a faster and more accurate data-driven water quality prediction model. First, a physical-based model (HSPF, EFDC) was operated to produce daily water quality reflecting the complexity of the watershed according to various hydrological conditions for Paldang Dam. The Gamma Test was performed on the water quality at the water quality prediction site (Paldangdam2) and major rivers flowing into the Paldang Dam, and the method of selecting the optimal input data combination was presented through the analysis results (Gamma, Gradient, Standar Error, V-Ratio). As a result of the study, the selection criteria for a more efficient combination of input data that can save time by omitting trial and error when building a data-driven model are presented.

Anomaly Detections Model of Aviation System by CNN (합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구)

  • Hyun-Jae Im;Tae-Rim Kim;Jong-Gyu Song;Bum-Su Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • Recently, Urban Aircraft Mobility (UAM) has been attracting attention as a transportation system of the future, and small drones also play a role in various industries. The failure of various types of aviation systems can lead to crashes, which can result in significant property damage or loss of life. In the defense industry, where aviation systems are widely used, the failure of aviation systems can lead to mission failure. Therefore, this study proposes an anomaly detection model using deep learning technology to detect anomalies in aviation systems to improve the reliability of development and production, and prevent accidents during operation. As training and evaluating data sets, current data from aviation systems in an extremely low-temperature environment was utilized, and a deep learning network was implemented using the convolutional neural network, which is a deep learning technique that is commonly used for image recognition. In an extremely low-temperature environment, various types of failure occurred in the system's internal sensors and components, and singular points in current data were observed. As a result of training and evaluating the model using current data in the case of system failure and normal, it was confirmed that the abnormality was detected with a recall of 98 % or more.

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

Multidimensional data generation of water distribution systems using adversarially trained autoencoder (적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성)

  • Kim, Sehyeong;Jun, Sanghoon;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.439-449
    • /
    • 2023
  • Recent advancements in data measuring technology have facilitated the installation of various sensors, such as pressure meters and flow meters, to effectively assess the real-time conditions of water distribution systems (WDSs). However, as cities expand extensively, the factors that impact the reliability of measurements have become increasingly diverse. In particular, demand data, one of the most significant hydraulic variable in WDS, is challenging to be measured directly and is prone to missing values, making the development of accurate data generation models more important. Therefore, this paper proposes an adversarially trained autoencoder (ATAE) model based on generative deep learning techniques to accurately estimate demand data in WDSs. The proposed model utilizes two neural networks: a generative network and a discriminative network. The generative network generates demand data using the information provided from the measured pressure data, while the discriminative network evaluates the generated demand outputs and provides feedback to the generator to learn the distinctive features of the data. To validate its performance, the ATAE model is applied to a real distribution system in Austin, Texas, USA. The study analyzes the impact of data uncertainty by calculating the accuracy of ATAE's prediction results for varying levels of uncertainty in the demand and the pressure time series data. Additionally, the model's performance is evaluated by comparing the results for different data collection periods (low, average, and high demand hours) to assess its ability to generate demand data based on water consumption levels.