• 제목/요약/키워드: 신경 논리 망

검색결과 79건 처리시간 0.024초

신경논리망을 이용한 퍼지추론 네트워크와 탐색전략 (Fuzzy Inference Network and Search Strategy using Neural Logic Network)

  • 이말례
    • 한국멀티미디어학회논문지
    • /
    • 제4권2호
    • /
    • pp.189-196
    • /
    • 2001
  • 퍼지 논리의 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래 할 수 있다. 한편 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경 논리망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리망을 기반으로 하는 추론네트워크를 확장하여 퍼지 추론 네트워크를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙을 보완하여 적용한다. 퍼지 추론 네트워크상에서 퍼지 규칙의 실행부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다.

  • PDF

신경 논리 망을 기반으로 한 퍼지 추론 망 구성 (Construct of Fuzzy Inference Network based on the Neural Logic Network)

  • 이말례
    • 인지과학
    • /
    • 제13권1호
    • /
    • pp.13-21
    • /
    • 2002
  • 퍼지 논리를 이용한 추론은 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래할 수 있다. 또한 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링하기 위해서 필요한 논리적인 추론에는 부적합하다. 하지만 신경 망의 변형인 신경 논리 망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리 망을 기반으로 하는 추론 망을 확장하여 퍼지 추론 망을 구성하고 기존의 추론 망에서 사용되는 전파규칙을 보완하여 적용하고자 한다. 퍼지 추론 망에서 퍼지 규칙의 결론부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다. 이를 위해, 연결된 모든 노드들의 링크를 따라 순차적인 탐색을 하는 경우와 링크에 부여된 우선순위에 의해 탐색을 하는 경우의 탐색비용에 대하여 실험을 통해 비교 평가하였다. 실험결과 퍼지 추론 망의 크기가 확장될수록, 그리고 탐색 경험의 횟수가 증가할수록 순차적인 탐색전략보다 우선순위에 의한 탐색전략이 탐색 비용면에서 효율성이 더욱 증가함을 알 수 있었다.

  • PDF

패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구 (A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition)

  • 박영석
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.233-236
    • /
    • 2000
  • 본 연구에서는 패턴 인식용 다층 퍼셉트론 신경망을 순수 디지털 논리회로 모델로 전환 구현할 수 있도록 새로운 논리뉴런의 구조, 디지털 정형 다층논리신경망 구조, 그리고 패턴인식의 응용을 위한 다단 다층논리 신경망 구조를 제안하고, 또한 제안된 구조는 매우 단순하면서도 효과적인 증가적인 가법적(Incremental Additive) 학습알고리즘이 존재함을 보였다.

  • PDF

다치 신경 망의 BP 학습 알고리즘을 이용한 패턴 인식 (Pattern Recognition Using BP Learning Algorithm of Multiple Valued Logic Neural Network)

  • 김두완;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.502-505
    • /
    • 2002
  • 본 논문은 다치(MVL:Multiple Valued Logic) 신경망의 BP(Backpropagation) 학습 알고리즘을 이용하여 패턴 인식에 이용하는 방법을 제안한다. MVL 신경망을 이용하여 패턴 인식에 이용함으로서, 네트워크에 필요한 시간 및 기억 공간을 최소화할 수 있고 환경 변화에 적응할 수 있는 가능성을 제시하였다. MVL 신경망은 다치 논리 함수를 기반으로 신경망을 구성하였으며, 입력은 리터럴 함수로 변환시키고, 출력은 MIN과 MAX 연산을 사용하여 구하였고, 학습을 하기 위해 다치 논리식의 편 미분을 사용하였다.

신경논리망 기반의 퍼지추론 네트워크와 탐색 전략 (Neural Logic Network-Based Fuzzy Inference Network and its Search Strategy)

  • 이현주;김재호
    • 한국정보처리학회논문지
    • /
    • 제3권5호
    • /
    • pp.1138-1146
    • /
    • 1996
  • 퍼지 논리는 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래할 수 있다. 한편, 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경논리망 (neural logic network)을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경논리망을 기반으로 하는 추론 네트워크를 확장하여 퍼지추론 네트워크(fuzzy inference network)를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙 (propagation rule)을 보완하여 적용한다. 퍼지추론 네트워크 상에서 퍼지 규칙의 실행부에 해당하는 명제의 믿음값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다. 이를 위해서 연결된 모든 노드들의 링크를 따라 순차적인 탐색을 하는 경우와 링크에 부여된 우선순위에 의해 탐색을 하는 경우의 탐색비용에 대하여 실험을 통해 비교·평가한다.

  • PDF

퍼지추론 네트워크를 이용한 적응적 탐색전략 (An Adaptive Search Strategy using Fuzzy Inference Network)

  • Lee, Sang-Bum;Lee, Sung-Joo;Lee, Mal-Rey
    • 한국컴퓨터정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.48-57
    • /
    • 2001
  • 퍼지 논리의 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래할 수 있다. 한편 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링 하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경 논리망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리망을 기반으로 하는 추론네트워크를 확장하여 퍼지 추론 네트워크를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙을 보완하여 적용한다. 퍼지 추론 네트워크상에서 퍼지규칙의 실행부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다.

중회귀 모형을 이용한 일최고 오존 농도 예측성 검토에 관한 연구 (Prediction of Daily Maximum Ozone Concentration using Multi-Regression)

  • 김영은;조석연
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 1999년도 추계학술대회 논문집
    • /
    • pp.203-204
    • /
    • 1999
  • 대기질의 통계예측모형은 주로 오존 농도 예측에 사용된다. 통계예측 방법은 중회귀 모형, 신경망 모형, Fuzzy 논리 모형 등이 있다. 중회귀 모형은 종래 통계분석 방법으로 예전부터 많이 사용되고 있는 방법인 반면에 신경망 모형과 Fuzzy 논리 모형은 최근에 개발되어 적용가능성을 검토 중인 방법이다. 국내외 연구결과에 의하면 각 방법에 의한 고농도 오존 예측성은 크게 다르지 않았다. 국내에서는 중회귀 모형과 신경망 모형이 적용되었는데, 상관계수는 0.6-0.7저도로 보고되었다.(중략)

  • PDF

패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구 (A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition)

  • 박영석
    • 융합신호처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.111-118
    • /
    • 2001
  • 본 연구에서는 패턴 인식용 다층 퍼셉트론 신경망을 순수 디지털 논리회로 모델로 구현할 수 있도록 새로운 논리뉴런의 구조, 디지털 정형 다층논리신경망 구조, 그리고 패턴인식의 응용을 위한 다단 다층논리 신경망 구조를 제안하고, 또한 제안된 구조는 매우 단순하면서도 효과적인 증가적인 가법적(Incremental Additive) 학습알고리즘이 존재함을 보였다.

  • PDF

영상 인식을 위한 생리학적 퍼지 신경망 (Physiological Fuzzy Neural Networks for Image Recognition)

  • 김광백;문용은;박충식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.169-185
    • /
    • 2005
  • 신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.

  • PDF

ATM시대의 기업정보통신망구조 전망

  • 최은호;이상훈
    • 전자공학회지
    • /
    • 제21권3호
    • /
    • pp.63-69
    • /
    • 1994
  • 본고에서는 향후 기업정보 통신망을 정보를 전달하는 하부구조인 전달망과 망의서비스를 제어 관리하고 망자원을 운용 관리하는 상부 구조인 논리망으로 나누어 향후 ATM시대의 기업 정보통신망구조를 정립해 본다. 기존에 음성과 데이타별로 별개의 기업 통신망으로 구성되온 기업 정보통신망에서 모든 정보 전달망이 ATM기술로 통합되고 정보 논리망이 기업의 모든 정보와 기업구성원을 하나로 네트워킹하게 될 것으로 전망된다. ATM시대의 기업 정보통신망은 기업의 가장 중요한 신경망으로써 기업의 경쟁력과 경영의 효율화를 극대화시켜 줄 것이다.

  • PDF