• Title/Summary/Keyword: 신경 논리 망

Search Result 79, Processing Time 0.025 seconds

Fuzzy Inference Network and Search Strategy using Neural Logic Network (신경논리망을 이용한 퍼지추론 네트워크와 탐색전략)

  • 이말례
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule - inference network. and the traditional propagation rule is modified.

  • PDF

Construct of Fuzzy Inference Network based on the Neural Logic Network (신경 논리 망을 기반으로 한 퍼지 추론 망 구성)

  • 이말례
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Fuzzy logic ignores some information in the reasoning process. Neural network is powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule-inference network. And the traditional propagation rule is modified. Experiments are performed to compare search costs by sequential searching and searching by priority. The experimental results show that the searching by priority is more efficient than the sequential searching as the size of the fuzzy inference network becomes larder and an the number of searching increases.

  • PDF

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.233-236
    • /
    • 2000
  • 본 연구에서는 패턴 인식용 다층 퍼셉트론 신경망을 순수 디지털 논리회로 모델로 전환 구현할 수 있도록 새로운 논리뉴런의 구조, 디지털 정형 다층논리신경망 구조, 그리고 패턴인식의 응용을 위한 다단 다층논리 신경망 구조를 제안하고, 또한 제안된 구조는 매우 단순하면서도 효과적인 증가적인 가법적(Incremental Additive) 학습알고리즘이 존재함을 보였다.

  • PDF

Pattern Recognition Using BP Learning Algorithm of Multiple Valued Logic Neural Network (다치 신경 망의 BP 학습 알고리즘을 이용한 패턴 인식)

  • 김두완;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.502-505
    • /
    • 2002
  • 본 논문은 다치(MVL:Multiple Valued Logic) 신경망의 BP(Backpropagation) 학습 알고리즘을 이용하여 패턴 인식에 이용하는 방법을 제안한다. MVL 신경망을 이용하여 패턴 인식에 이용함으로서, 네트워크에 필요한 시간 및 기억 공간을 최소화할 수 있고 환경 변화에 적응할 수 있는 가능성을 제시하였다. MVL 신경망은 다치 논리 함수를 기반으로 신경망을 구성하였으며, 입력은 리터럴 함수로 변환시키고, 출력은 MIN과 MAX 연산을 사용하여 구하였고, 학습을 하기 위해 다치 논리식의 편 미분을 사용하였다.

Neural Logic Network-Based Fuzzy Inference Network and its Search Strategy (신경논리망 기반의 퍼지추론 네트워크와 탐색 전략)

  • Lee, Heon-Joo;Kim, Jae-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1138-1146
    • /
    • 1996
  • Fuzzy logic ignores some informations in the reasoning process. Neural networks are powerful tools for the pattern processing. However, to model human knowledges, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy logical reasoning, we construct fuzzy inference net-work based on the neural logic network, extending the existing rule-inferencing network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search cost for searching sequentially and searching by means of priorities.

  • PDF

An Adaptive Search Strategy using Fuzzy Inference Network (퍼지추론 네트워크를 이용한 적응적 탐색전략)

  • Lee, Sang-Bum;Lee, Sung-Joo;Lee, Mal-Rey
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.48-57
    • /
    • 2001
  • In a fuzzy connectionist expert system(FCES), the knowledge base can be constructed of neural logic networks to represent fuzzy rules and their relationship, We call it fuzzy rule inference network. To find out the belief value of a conclusion, the traditional inference strategy in a FCES will back-propagate from a rule term of the conclusion and follow through the entire network sequentially This sequential search strategy is very inefficient. In this paper, to improve the above search strategy, we proposed fuzzy rule inference rule used in a FCES was modified. The proposed adaptive search strategy in fuzzy rule inference network searches the network according to the search priorities.

Prediction of Daily Maximum Ozone Concentration using Multi-Regression (중회귀 모형을 이용한 일최고 오존 농도 예측성 검토에 관한 연구)

  • 김영은;조석연
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.203-204
    • /
    • 1999
  • 대기질의 통계예측모형은 주로 오존 농도 예측에 사용된다. 통계예측 방법은 중회귀 모형, 신경망 모형, Fuzzy 논리 모형 등이 있다. 중회귀 모형은 종래 통계분석 방법으로 예전부터 많이 사용되고 있는 방법인 반면에 신경망 모형과 Fuzzy 논리 모형은 최근에 개발되어 적용가능성을 검토 중인 방법이다. 국내외 연구결과에 의하면 각 방법에 의한 고농도 오존 예측성은 크게 다르지 않았다. 국내에서는 중회귀 모형과 신경망 모형이 적용되었는데, 상관계수는 0.6-0.7저도로 보고되었다.(중략)

  • PDF

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • In this paper, in order to implement the multi-layered perceptron neural network using pure digital logic circuit model, we propose the new logic neuron structure, the digital canonical multi-layered logic neural network structure, and the multi-stage multi-layered logic neural network structure for pattern recognition applications. And we show that the proposed approach provides an incremental additive learning algorithm, which is very simple and effective.

  • PDF

Physiological Fuzzy Neural Networks for Image Recognition (영상 인식을 위한 생리학적 퍼지 신경망)

  • Kim, Gwang-Baek;Mun, Yong-Eun;Park, Chung-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.169-185
    • /
    • 2005
  • 신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.

  • PDF

ATM시대의 기업정보통신망구조 전망

  • 최은호;이상훈
    • The Magazine of the IEIE
    • /
    • v.21 no.3
    • /
    • pp.63-69
    • /
    • 1994
  • 본고에서는 향후 기업정보 통신망을 정보를 전달하는 하부구조인 전달망과 망의서비스를 제어 관리하고 망자원을 운용 관리하는 상부 구조인 논리망으로 나누어 향후 ATM시대의 기업 정보통신망구조를 정립해 본다. 기존에 음성과 데이타별로 별개의 기업 통신망으로 구성되온 기업 정보통신망에서 모든 정보 전달망이 ATM기술로 통합되고 정보 논리망이 기업의 모든 정보와 기업구성원을 하나로 네트워킹하게 될 것으로 전망된다. ATM시대의 기업 정보통신망은 기업의 가장 중요한 신경망으로써 기업의 경쟁력과 경영의 효율화를 극대화시켜 줄 것이다.

  • PDF