• Title/Summary/Keyword: 신경회로망 제어기

Search Result 271, Processing Time 0.033 seconds

Design of RBF Neural Network Controller Based on Fuzzy Control Rules (퍼지 제어규칙을 기반으로한 RBF 신경회로망 제어기 설계)

  • Choi, Jong-Soo;Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.394-396
    • /
    • 1997
  • This paper describes RBF network controller based on fuzzy control rules for intelligent control of nonlinear systems. The proposed scheme is derived from the functional equivalence between RBF networks and fuzzy inference systems. The design procedure of the proposed scheme is realized by first transforming the fuzzy control rules into the parameters of RBF networks. The optimized RBF network controller is then performed through the gradient descent learning mechanism to an error function. The proposed method is rigorously tested using a nonlinear and unstable nonlinear system. Simulation is performed to demonstrate the feasibility and effectiveness of the proposed scheme.

  • PDF

A Study on the Development of Neural Network Predictive PID Controller for the Vibration Control of Building (빌딩의 진동제어를 위한 신경회로망 예측 PID 제어기 개발에 관한 연구)

  • 조현철;이진우;이권순
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.71-74
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rese to flexible light-weight structures like high-rise buildings and long-span bridges. Because these structures extremely susceptible to environmental loads, such as earthquakes and strong winds, these random loadings usually produce large deflection and acceleration on these structures. Vibration control system of structures are becoming an integral part of the structural system of the next generation of tall building. The proposed control system is applied to single degree of structure with mass damping and compared with conventional PID and neural network PID control system.

  • PDF

MTPA Control of Induction Motor Drive using Fuzzy-Neural Networks Controller (퍼지-신경회로망 제어기를 이용한 유도전동기의 최대토크 제어)

  • Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose fuzzy-neural network controller that combines a fuzzy control and the Neural Networks for high performance control of induction motor drive, Also, this paper is proposed control of maximum torque per ampere of induction motor. This strategy is proposed which is simple in structure and has the honest goal of minimizing the stator current magnitude for given load torque. The performance of the proposed induction motor drive with maximum torque control using fuzzy-neural network controller is verified by simulation at dynamic operation conditions.

  • PDF

A Vibration Control of Building Structure using Neural Network Predictive Controller (신경회로망 예측 제어기를 이용한 건축 구조물의 진동제어)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Kang, Suk-Bong;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.434-443
    • /
    • 1999
  • In this paper, neural network predictive PID (NNPPID) control system is proposed to reduce the vibration of building structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the parameters of controller. The neural networks predictor forecasts the future output based on present input and output of building structure. The controller is PID type whose parameters are yielded by neural networks self-tuning algorithm. Computer simulations show displacements of single and multi-story structure applied to NNPPID system about disturbance loads-wind forces and earthquakes.

  • PDF

Evolving Neural Network Controller for Stabilization of Inverted Pendulum System (도립 진자 시스템의 안정화를 위한 진화형 신경회로망 제어기)

  • Sim, Yeong-Jin;Lee, Jun-Tak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.157-163
    • /
    • 2000
  • In this paper, an Evolving Neural Network Controller(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algoithm(RVEGA) was presented for stabilization of an Inverter Pendulum(IP) system with nonlinearity. This proposed ENNC was described by a simple genetic chromosome. And the deletion of neuron, the determinations of input or output neuron, the deleted neuron and the activation functions types are given according to the various flag types. Therefore, the connection weights, its structure and the neuron types in the given ENNC can be optimized by the proposed evolution strategy. Through the simulations, we showed that the finally acquired optimal ENNC was successfully applied to the stabilization control of an IP system.

  • PDF

Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • 김상민;한우용;이창구
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.691-696
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

Design of a Neural Network Based Self-Tuning Fuzzy PID Controller (신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Im, Jeong-Heum;Lee, Chang-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

A Study on UCT Steering Control using NNPID Controller (신경회로망 자기동조 PID 제어기를 이용한 UCT의 조향제어에 관한 연구)

  • 손주한;이영진;이진우;조현철;이권순;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.363-369
    • /
    • 1999
  • In these days, there are a lot of studies in the port automation, for example, unmanned container trasporter, unmanned gantry crain, and automatic terminal operation systems and so on. In terms of loading and unloading equipments. we can consider container transporter. This paper describes the automatic control for the UCT(unmanned container transporter), especially steering control systems. UCT is now operated on ECT port in Netherland and tested on PSA ports in Singapore. So we present a design on the controller using neural network PID(NNPID) controller to control the steering system and we use the neural network self-tuner to tune the PID parameters. The computer simulations show that our proposed controller has better performances than those of the other.

  • PDF

Decision of Shift-map Using Hierarchical Neural Network (계층적 신경회로망을 사용한 변속선도 결정)

  • Choi, In-Chan;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • We have investigated the Intelligent Shift-map Module(ISM) to improve some problems in the conventional Automatic Transmission(AT) for automobiles. The typical AT lacks flexibility regarding the shift point because it does not consider the driver's habits and inclinations. Also it often is occurred phenomenon like kick-down. Therefore, we designed a decision module which considers the driving style of the individual driver. The driving style was determined by the inclination of the driver and the driving technique using actual automobile data. The Hierarchical Neural Network(HNN) was applied in generating an intelligent shift map with Multilayer Neural Network(MNN). It was found that the proposed ISM provided a suitable shift point and time because the necessary toque and velocity of the automobile was considered along with the driving style of each driver when designing the ISM.

Real Time Neural Controller Design of Industrial Robot Using Digital Signal Processors (디지탈 신호 처리기를 사용한 산업용 로봇의 실시간 뉴럴 제어기 설계)

  • 김용태;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.759-763
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF