Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2012.06a
/
pp.257-259
/
2012
친환경 시대로 나아가는 현재, 능동소음제어는 저주파소음을 줄이기 위한 좋은 방법이다. 또한 수동소음제어만으로 선박소음을 제어하기에는 물리적인 무게가 심각히 가중되어 한계를 가지게 된다. ANC 시스템은 이러한 문제를 해결해 줌과 더불어 다양하게 변화하는 환경소음까지 줄여주는 특성을 가지고 있다. 우리는 본 논문에서 선박의 환경소음을 줄이기 위하여 LMS 알고리즘과 신경회로망 알고리즘을 기반으로하는 ANC 시스템을 제안한다. 먼저 선박과 유사한 유도전동기의 소음을 측정하고 다음으로 ANC 시스템을 위한 LMS 구조를 구축한다. 그리고 소음의 비정치와 불확실성 때문에 단층 퍼셉트론 모델로 디자인된 신경회로망 알고리즘을 추가하여 실시간으로 소음을 줄이도록 하였다. 이 하이브리드 ANC 시스템은 최급강하기법의 방법으로 파라미터 값들이 온라인으로 실시간 추정되며, 제안된 ANC 시스템은 컴퓨터 시뮬레이션을 이용하여 그 성능을 분석하였다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.19
no.2
/
pp.284-292
/
1994
In mobile cellular systems, the ever-increasing demand for service continuously necessitaties cell splitting or assignning additional channels to certain base stations. But for most of the presently operative systems, the channels that are already used at some existing base stations are strongly desired not to be changed, giving rise to the Problem of Adaptively Assigning Channels(PAAC). In this paper, we show that the problem can efficiently be solved using the neural network algorithm by exploiting the special feature of the PAAC.
There are problems to research the aquatic ecosystems. One is that an observer must be stationed in the specified environment and the other is that his subjective analysis causes incorrect results. In this paper, we proposed the model to evaluate and manage resources. It is based on the simulation of data acquisition and hydrodynamic model in the aquatic ecosystems. We used the artificial neural network to detect the collision between fluids. In the experiment result, the proposed model if very effective and accurate in the detection of collision.
Journal of the Korea Institute of Information and Communication Engineering
/
v.4
no.1
/
pp.145-154
/
2000
In this paper we proposed the orthogonal neural network(ONN) to control and identify the unknown controlled system. The proposed ONN used the buffer layer in front of the hidden layer and the hidden layer used the sigmoid function and its derivative a derived RBF that is a derivative of the sigmoid function. In order to verify the property of the proposed, it is examined by simulation results of the Narendra model. Controlled system is composed of ONN and confirmed its usefulness through simulation and experimental results.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2006.05a
/
pp.800-803
/
2006
In this paper, we propose a method for improving the performance of the face recognition using a hybrid neural network. The propose method focused on improving face recognition technique using SOM and LVQ. In order to verify the effectiveness of the proposed method, we performed simulations on face database supplied ORL. The results show that the proposed method considerably improves on the performance of the eigenface, hidden markov model, multilayer neural network.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.228-231
/
2006
모터의 설계를 위해서는 여러가지 방법에 의해서 해석을 먼저 수행하는 것이 필수적이다. 이를 위해서는 시스템에 대한 최적 모델링이 필수적인데 모터의 전자기적인 해석에는 비선형성이 크기 때문에 최적의 모델링이 쉽지 않다. 특히 집중권선 방식을 이용한 유도기는 자속의 집중으로 인해 고조파 발생 등 많은 문제점을 안고 있어서 실제로 유도기 설계시 설계자들이 많은 어려움을 겪고 있으며, 많은 설계자들은 대부분 등가회로를 이용한 방법으로 시뮬레이션하고, 자신의 경험을 바탕으로 시행착오를 거쳐 가면서 설계를 하고 있다. 그러나 그렇게 설계된 제품이 최적의 설계인지도 의문시 되는 경우가 대부분이다. 따라서 본 논문에서는 모터의 최적설계를 위하여 기존 개발한 집중권 방식 유도기를 대상으로 신경회로망을 이용하여 시스템을 모델링하였고, 그 결과를 확인하기 위해 기존 개발한 집중권 유도기의 실측치와 신경회로망을 이용하여 모델링한 방법을 비교, 제시하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.7
/
pp.830-837
/
2004
Neural networks-based fault diagnosis algorithm to detect and isolate faults in the nonlinear systems is proposed. In the proposed method, the fault is detected when the errors between the system output and the multilayer neural network-based nominal model output cross a Predetermined threshold. Once a fault in the system is detected, the system outputs are transferred to the fault classifier by nultilayer/ART2 NN (adaptive resonance theory 2 neural network) for fault isolation. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.
본 연구에서는 패턴분류를 위해 최적화된 방사형 기저 함수 신경회로망(Radial Basis Function Neural Networks) 분류기를 제안한다. RBFNN은 입력층, 은닉층, 출력층의 3층 구조로 되어 있으며 Multi Dimension, Predictive ability, Robustness한 특징이 있다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 Fuzzy C-means 클러스터링 알고리즘을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. RBFNN은 은닉층의 노드수와 FCM 클러스터링의 퍼지화 계수, 연결가중치의 다항식 타입이 모델의 성능의 향상에 영향을 미치기 때문에 최적화가 필요하며 본 논문에서는 Differential Evolution(DE) 알고리즘을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 제안된 모델을 평가하기 위해 패턴분류에 많이 사용되는 Iris 데이터와 Wine 데이터를 이용하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.3
/
pp.487-492
/
2002
In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method is composed of neural network of state space model type, performs for a unknown nonlinear system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.05a
/
pp.494-497
/
2002
In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.