• Title/Summary/Keyword: 신경회로망 모델

Search Result 326, Processing Time 0.029 seconds

Computational circuits using neural optimization concept (신경회로망의 최적화 개념을 이용한 연산회로)

  • 강민제;고성택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.157-163
    • /
    • 1998
  • A neural network structure able to perform the operations of analogue and binary addition is proposed. The network employs Hopfield' model of a neuron with the connection elements specified on the basis of an analysis of the energy function. Simulation using NMOS neurons has shown convergence predominantly to the correct global minima.

  • PDF

A Study on the Hardware Implementation of Competitive Learning Neural Network with Constant Adaptaion Gain and Binary Reinforcement Function (일정 적응이득과 이진 강화함수를 가진 경쟁학습 신경회로망의 디지탈 칩 개발과 응용에 관한 연구)

  • 조성원;석진욱;홍성룡
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.34-45
    • /
    • 1997
  • In this paper, we present hardware implemcntation of self-organizing feature map (SOFM) neural networkwith constant adaptation gain and binary reinforcement function on FPGA. Whereas a tnme-varyingadaptation gain is used in the conventional SOFM, the proposed SOFM has a time-invariant adaptationgain and adds a binary reinforcement function in order to compensate for the lowered abilityof SOFM due to the constant adaptation gain. Since the proposed algorithm has no multiplication operation.it is much easier to implement than the original SOFM. Since a unit neuron is composed of 1adde $r_tracter and 2 adders, its structure is simple, and thus the number of neurons fabricated onFPGA is expected to he large. In addition, a few control signal: ;:rp sufficient for controlling !he neurons.Experimental results show that each componeni ot thi inipiemented neural network operates correctlyand the whole system also works well.stem also works well.

  • PDF

Microcellular Propagation Loss Prediction Using Neural Networks and 3-D Digital Terrain Maps (신경회로망과 3차원 지형데이터를 이용한 마이크로셀 전파손실 예측)

  • 양서민;이혁준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.419-429
    • /
    • 1999
  • Identifying the boundary of the effective receiving power of waves is one of the most important factors for cell optimization. In this paper, we introduce a propagation loss prediction model which yields highly accurate prediction in very complex areas as Seoul where a mixture of many large buildings, small buildings, broad streets, narrow alleys, rivers and forests co-exist in an irregular arrangement. This prediction model is based on neural networks trained on field measurement data collected in the past. Using these data along with 3-D digital elevation maps and vector data for building structures, we extract the parameter values which mainly affect the amount of propagation loss. These parameter values are then used as the inputs to the neural network. Trained neural network becomes the approximated function of the propagation loss model which generalizes very well and can predict accurately in the regions not included in training the neural network. The experimental results show a superior performance over the other models in the cells operating in the city of Seoul.

  • PDF

Development of a high Impedance Fault Detection Method in Distribution Lines using Neural network (신경회로망을 이용한 배전선로 고저항 사고 검출 기법의 개발)

  • 황의천;김남호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 1999
  • This paper proposed a high impedance fault detection method using a neural network on distribution lines. The $\upsilon-i$ characteristic curve was obtained by high impedance fault data tested in various soil conditions. High impedance fault was simulated using EMTP. The pattern of High Impedance Fault on high density pebbles was taken as the learning model, and the neural network was evaluated on various soil conditions. The average values after analyzing fault current by FFT of even.odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method .ethod .

  • PDF

Neural Networks-based Statistical Approach for Fault Diagnosis in Nonlinear Systems (비선형시스템의 고장진단을 위한 신경회로망 기반 통계적접근법)

  • Lee, In-Soo;Cho, Won-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.503-510
    • /
    • 2002
  • This paper presents a fault diagnosis method using neural network-based multi-fault models and statistical method to detect and isolate faults in nonlinear systems. In the proposed method, faults are detected when the errors between the system output and the neural network nominal system output cross a predetermined threshold. Once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.

Trajectoroy control for a Robot Manipulator by Using Multilayer Neural Network (다층 신경회로망을 사용한 로봇 매니퓰레이터의 궤적제어)

  • 안덕환;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1186-1193
    • /
    • 1991
  • This paper proposed a trajectory controlmethod for a robot manipulator by using neural networks. The total torque for a manipulator is a sum of the linear feedback controller torque and the neural network feedfoward controller torque. The proposed neural network is a multilayer neural network with time delay elements, and learns the inverse dynamics of manipulator by means of PD(propotional denvative)controller error torque. The error backpropagation (BP) learning neural network controller does not directly require manipulator dynamics information. Instead, it learns the information by training and stores the information and connection weights. The control effects of the proposed system are verified by computer simulation.

  • PDF

Single-Electron Devices for Hopfield Neural Network (홉필드 신경회로망을 위한 단일전자 소자)

  • Yu, Yun-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.16-21
    • /
    • 2008
  • This paper introduces a new type of Hopfield neural network using newly developed single-electron devices. In the electrical model of the Hopfield neural network, a single-electron synapse, used as a voltage(or current)-variable resistor, and two stages of single-electron inverters, used as a nonlinear activation function, are simulated with a single-electron circuit simulator using Monte-Carlo method to verily their operation.

Design and Implementation for Adaptive Learning System based Dynamic Contents Using Fuzzy Neural Network (퍼지신경회로망을 이용한 동적 학습내용 기반 적응형 학습시스템의 설계 및 구현)

  • Park, Tae-O;Hwang, Jin;Lee, Bae-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.761-763
    • /
    • 2008
  • 최근 온라인교육의 필요성이 높아지고 요구 수준이 커짐에 따라 교육 서비스를 제공하는 시스템의 지능화된 처리능력이 필요하다. 퍼지신경회로망은 각각의 가중치(weight)를 갖는 채널로 연결한 망형태의 계산모델이다. 퍼지신경회로망을 학습시스템에 적용하여 학습자의 문항테스트 결과에서 학습과정을 재설정 할 수 있는 출력 값을 생성한다. 적응형 학습시스템은 퍼지신경회로망을 적용하여 개별화된 강의 코스로 학습을 진행하고 결과의 feedback을 통해 학습자의 최적 커리큘럼을 찾아내는 방법을 구현하였다.

Neural Network-Based Modeling for Fuel Consumption Prediction of Vehicle (차량 연료 소모량 예측을 위한 신경회로망 기반 모델링)

  • Lee, Min-Goo;Jung, Kyung-Kwon;Yi, Sang-Hoi
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.19-25
    • /
    • 2011
  • This paper presented neural network modeling method using vehicle data to predict fuel consumption. To acquire data for training and testing the proposed neural network, medium-class gasoline vehicle drove at downtown and parameters measured include speed, engine rpm, throttle position sensor (TPS), and mass air flow (MAF) as input data, and fuel consumption as target data from OBD-II port. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the neural network model can predict the vehicle quite well with mean squared error was $1.306{\times}10^{-6}$ for the fuel consumption.

Hangeul Character Classification Model Based on Cognitive Theory and ART Neural Network (인지이론과 ART 신경회로망에 기반한 한글 문자 분류 모델)

  • Park Joong-Yang;Park Jae-Heung;Jang Jae-Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.33-42
    • /
    • 2005
  • In this paper, we propose a new training algorithm for improving pattern classification performance of ART neural network. The proposed train algorithm restricts unnecessary cluster generation and transition, applies the location extraction algorithm, and operates the reset system based on the agreement between the present learning pattern and the initial pattern. As a result, repetitive input of a pattern does not generate a new cluster and mis-recognition rate decreases.

  • PDF