Journal of the Korea Institute of Information and Communication Engineering
/
v.2
no.1
/
pp.157-163
/
1998
A neural network structure able to perform the operations of analogue and binary addition is proposed. The network employs Hopfield' model of a neuron with the connection elements specified on the basis of an analysis of the energy function. Simulation using NMOS neurons has shown convergence predominantly to the correct global minima.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.5
/
pp.34-45
/
1997
In this paper, we present hardware implemcntation of self-organizing feature map (SOFM) neural networkwith constant adaptation gain and binary reinforcement function on FPGA. Whereas a tnme-varyingadaptation gain is used in the conventional SOFM, the proposed SOFM has a time-invariant adaptationgain and adds a binary reinforcement function in order to compensate for the lowered abilityof SOFM due to the constant adaptation gain. Since the proposed algorithm has no multiplication operation.it is much easier to implement than the original SOFM. Since a unit neuron is composed of 1adde $r_tracter and 2 adders, its structure is simple, and thus the number of neurons fabricated onFPGA is expected to he large. In addition, a few control signal: ;:rp sufficient for controlling !he neurons.Experimental results show that each componeni ot thi inipiemented neural network operates correctlyand the whole system also works well.stem also works well.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.10
no.3
/
pp.419-429
/
1999
Identifying the boundary of the effective receiving power of waves is one of the most important factors for cell optimization. In this paper, we introduce a propagation loss prediction model which yields highly accurate prediction in very complex areas as Seoul where a mixture of many large buildings, small buildings, broad streets, narrow alleys, rivers and forests co-exist in an irregular arrangement. This prediction model is based on neural networks trained on field measurement data collected in the past. Using these data along with 3-D digital elevation maps and vector data for building structures, we extract the parameter values which mainly affect the amount of propagation loss. These parameter values are then used as the inputs to the neural network. Trained neural network becomes the approximated function of the propagation loss model which generalizes very well and can predict accurately in the regions not included in training the neural network. The experimental results show a superior performance over the other models in the cells operating in the city of Seoul.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.13
no.2
/
pp.80-87
/
1999
This paper proposed a high impedance fault detection method using a neural network on distribution lines. The $\upsilon-i$ characteristic curve was obtained by high impedance fault data tested in various soil conditions. High impedance fault was simulated using EMTP. The pattern of High Impedance Fault on high density pebbles was taken as the learning model, and the neural network was evaluated on various soil conditions. The average values after analyzing fault current by FFT of even.odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method .ethod .
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.6
/
pp.503-510
/
2002
This paper presents a fault diagnosis method using neural network-based multi-fault models and statistical method to detect and isolate faults in nonlinear systems. In the proposed method, faults are detected when the errors between the system output and the neural network nominal system output cross a predetermined threshold. Once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.
The Journal of Korean Institute of Communications and Information Sciences
/
v.16
no.11
/
pp.1186-1193
/
1991
This paper proposed a trajectory controlmethod for a robot manipulator by using neural networks. The total torque for a manipulator is a sum of the linear feedback controller torque and the neural network feedfoward controller torque. The proposed neural network is a multilayer neural network with time delay elements, and learns the inverse dynamics of manipulator by means of PD(propotional denvative)controller error torque. The error backpropagation (BP) learning neural network controller does not directly require manipulator dynamics information. Instead, it learns the information by training and stores the information and connection weights. The control effects of the proposed system are verified by computer simulation.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.45
no.6
/
pp.16-21
/
2008
This paper introduces a new type of Hopfield neural network using newly developed single-electron devices. In the electrical model of the Hopfield neural network, a single-electron synapse, used as a voltage(or current)-variable resistor, and two stages of single-electron inverters, used as a nonlinear activation function, are simulated with a single-electron circuit simulator using Monte-Carlo method to verily their operation.
Proceedings of the Korea Information Processing Society Conference
/
2008.05a
/
pp.761-763
/
2008
최근 온라인교육의 필요성이 높아지고 요구 수준이 커짐에 따라 교육 서비스를 제공하는 시스템의 지능화된 처리능력이 필요하다. 퍼지신경회로망은 각각의 가중치(weight)를 갖는 채널로 연결한 망형태의 계산모델이다. 퍼지신경회로망을 학습시스템에 적용하여 학습자의 문항테스트 결과에서 학습과정을 재설정 할 수 있는 출력 값을 생성한다. 적응형 학습시스템은 퍼지신경회로망을 적용하여 개별화된 강의 코스로 학습을 진행하고 결과의 feedback을 통해 학습자의 최적 커리큘럼을 찾아내는 방법을 구현하였다.
This paper presented neural network modeling method using vehicle data to predict fuel consumption. To acquire data for training and testing the proposed neural network, medium-class gasoline vehicle drove at downtown and parameters measured include speed, engine rpm, throttle position sensor (TPS), and mass air flow (MAF) as input data, and fuel consumption as target data from OBD-II port. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the neural network model can predict the vehicle quite well with mean squared error was $1.306{\times}10^{-6}$ for the fuel consumption.
In this paper, we propose a new training algorithm for improving pattern classification performance of ART neural network. The proposed train algorithm restricts unnecessary cluster generation and transition, applies the location extraction algorithm, and operates the reset system based on the agreement between the present learning pattern and the initial pattern. As a result, repetitive input of a pattern does not generate a new cluster and mis-recognition rate decreases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.