• Title/Summary/Keyword: 신경절세포

Search Result 82, Processing Time 0.024 seconds

Synaptic Pattern of NMDA R1 upon the Direction-Selective Retinal Ganglion Cells in Developing Mouse Retina (발생 중 마우스 망막에서 방향특이성 신경절세포의 NMDA R1 수용체의 시냅스 패턴)

  • Lee, Jee-Geon;Kwon, Oh-Ju;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.533-540
    • /
    • 2013
  • Purpose: To investigate the synaptic pattern of NMDA glutamate receptor subtype NMDA R1 on the dendritic arbors of ON-OFF direction-selective retinal ganglion cells (DS-RGSs) in developing [(5,10) days postnatal (PN)] mouse retina. Methods: ON-OFF DS-RGCs were injected with Lucifer yellow and the cells were identified by their characteristic morphology. To identify glutamatergic excitatory input from bipolar cell, we used a marker for the membrane traffic motor protein kinesin. Results: We identified DS-RGCs in P5, and P10 mouse retina. The immunofluorescence labeling of NMDA R1 was most prominent in the IPL. Our results showed that their presence upon the entire dendritic arbor of ON-OFF DS-RGCs is without any evidence of asymmetry, which would predict direction selectivity. Conclusions: The glutamatergic input from bipolar cell reveals symmetry pattern in all periods of P5, and P10. The results may suggest that direction selectivity not lies in the specific pattern of NMDA R1 receptors.

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF

Infection of Semliki Forest Virus Induces Demyelination of Neuron (Semliki Forest Virus 감염은 뉴우런의 탈수초를 유발한다)

  • Kim, Hyun Joo;Sa, Young-Hee;Hong, Seong-Karp
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1212-1217
    • /
    • 2017
  • We constructed a population of myelinated cells with co-culture of neuronal cells and Schwann cells from DRG. Schwann cells and neuronal cells were isolated from dorsal root ganglion (DRG) in embryos of rat in vitro respectively. The cultured Schwann cells and cultured neuronal cells, respectively were co-cultured in a same plate. This procedure contains following four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitoticcocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. These cells were performed accomplishment of myelination. This myelinated co-culture system was infected by Semliki forest virus and then induced demyelination processing in this myelinated co-culture. We identified myelination and demyelination processing using antibody of peripheral myelin protein 22 (PMP 22) meaning presence of myelinated neuron.

A Ultrastructural Study on the Cerebral Ganglion of the African Giant Snail, Achatina fulica (아프리카 왕달팽이 (Achatina fulica) 뇌신경절 (Cerebral ganglion)의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.303-313
    • /
    • 1999
  • In this paper, five kinds of neurosecretory cells-light green (LG) cell, dark green (DG) cell, caudo-dorsal (CD) cell, blue green (BG) cell, and yellow (Y) cell- and neuropils in the cerebral ganglion of the African giant snail, Achatina fulica, were observed with an electron microscope. The following results were obtained. The LG cells are circular or ovoid in shape, and about $60{\mu}m$ in size. The nucleus and cytoplasm of the LG cell look light due to their electron-low density. Large granular chromatins are evenly developed in the karyolymph, where round nucleoli are also found. In the cytoplasm, electron -high dense round granules of $0.4{\mu}m$ in average size are crowded. The DG cells are ovoid in shape, and $50\sim20{\mu}m$ in size. These relatively electron-high dense cells were rarely found. In their cytoplasm, cell organelles such as rough endoplasmic reticulum and mitochondria are found together with electron -high dense round granules of $0.2{\mu}m$ in average size. The CD cells are ellipsoidal cells densely distributed in caudo-dorsal parts of the cerebral ganglion. They have large nuclei compared with the cytoplasm. The developed granular heterochromatins are observed in the karyolymph, and lots of small round granules of $0.12{\mu}m$ in average size in the cytoplasm. The 3G cells, rarely found around endoneurium of the cerebral ganglion, take the shapes of long ellipses. They look dark due to their electron -high density. In the cytoplasm, small round granules of $0.1{\mu}m$ in average size are found. The Y cells are the smallest among the neurosecretory cells($9\times6.6{\mu}m$ in size). They are found mostly between the medio-dorsal parts and the caudo-dorsal parts of the cerebral ganglion. In the cytoplasm, tiny round granules of $0.08{\mu}m$ in average size form a group. The neuropils are found in the middle of the cerebral ganglion. In the axon ending, round granules with electron -high density ($0.07\sim0.03{\mu}m$ in diameter) and lucent vesicles ($0.03{\mu}m$ in diameter) are found in large quantities. They are excreted in the state of exocytosome formed by the invagination of the limiting membrane of the axon ending.

  • PDF

Comparison of Retinal Ganglion Cell Responses to Different Voltage Stimulation Parameters in Normal and rd1 Mouse Retina (정상망막과 변성망막에서 전압자극 파라미터 변화에 따른 망막신경절세포의 반응 비교)

  • Ye, Jang-Hee;Ryu, Sang-Baek;Kim, Kyung-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Since retinal prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. Therefore, in this paper, we focused on retinal ganglion cell (RGC) responses to different voltage stimulation parameters and compared threshold charge densities in normal and rd1 mice. For this purpose, we used in vitro preparation for the retina of normal and rd1 mice on micro-electrode arrays. When the neural network of rd1 mouse retinas is stimulated with voltage-controlled pulses, RGCs in degenerated retina also respond to voltage amplitude or voltage duration modulation as well in wild-type RGCs. But the temporal pattern of RGCs response is very different; in wild-type RGCs, single peak within 100 ms appears while in RGCs in degenerated retina multiple peaks (~4 peaks) with ~10 Hz rhythm within 400 ms appear. The thresholds for electrical activation of RGCs are overall more elevated in rd1 mouse retinas compared to wild-type mouse retinas: The thresholds for activation of RGCs in rd1 mouse retinas were on average two times higher ($70.50{\sim}99.87\;{\mu}C/cm^2$ vs. $37.23{\sim}61.65\;{\mu}C/cm^2$) in the experiment of voltage amplitude modulation and five times higher ($120.5{\sim}170.6\;{\mu}C/cm^2$ vs. $22.69{\sim}37.57\;{\mu}C/cm^2$) in the experiment of voltage duration modulation than those in wild-type mouse retinas. This is compatible with the findings from human studies that the currents required for evoking visual percepts in RP patients is much higher than those needed in healthy individuals. These results will be used as a guideline for optimal stimulation parameters for upcoming Korean-type retinal prosthesis.

Fine Needle Aspiration Cytology of the Mediastinal Lesions (종격동 병변의 경흉 세침흡인 세포학적 진단)

  • Park, In-Ae;Ham, Eui-Keun
    • The Korean Journal of Cytopathology
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 1990
  • The authors report 16 cases of mediastinal fine-needle aspiration cytology from Jan. 1985 to Mar. 1988 at the Seoul National University Hospital. Among them, diagnostic material were obtained in fifteen cases, establishing the diagnosis of 7 thymomas, 2 germinomas, 2 neurogenic tumosr, 1 lymphoma, and 3 meastatic carcinomas. The 9 cytologic diagnoses could be confirmed by histologic examination in 8 patients and by another cytologic method in one patient, allowing concordance rate of 77%.

  • PDF

Electrical Stimulation Parameters in Normal and Degenerate Rabbit Retina (정상 망막과 변성 망막을 위한 전기자극 파라미터)

  • Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa (RP) or age related macular degeneration (AMD). Recently Korean consortium launched for developing retinal prosthesis. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we performed voltage stimulation experiment both in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: $50k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. Mono-polar electrical stimulation was applied through one of the 60 MEA channel, and the remaining channels were used for recording. The electrical stimulus was a constant voltage, charge-balanced biphasic, anodic-first square wave pulse without interphase delay, and 50 trains of pulse was applied with a period of 2 sec. Different electrical stimuli were applied. First, pulse amplitude was varied (voltage: $0.5{\sim}3.0V$). Second, pulse duration was varied $(100{\sim}1,200{\mu}s)$. Evoked responses were analyzed by PSTH from averaged data with 50 trials. Charge density was calculated with Ohm's and Coulomb's law. In normal retina, by varying the pulse amplitude from 0.5 to 3V with fixed duration of $500{\mu}s$, the threshold level for reliable ganglion cell response was found at 1.5V. The calculated threshold of charge density was $2.123mC/cm^2$. By varying the pulse duration from 100 to $1,200{\mu}s$ with fixed amplitude of 2V, the threshold level was found at $300{\mu}s$. The calculated threhold of charge density was $1.698mC/cm^2$. Even after the block of ON-pathway with L-(1)-2-amino-4-phosphonobutyric acid (APB), electrical stimulus evoked ganglion cell activities. In this APB-induced degenerate retina, by varying the pulse duration from 100 to $1200{\mu}s$ with fixed voltage of 2 V, the threshold level was found at $300{\mu}s$, which is the same with normal retina. More experiment with APB-induced degenerate retina is needed to make a clear comparison of threshold of charge density between normal and degenerate retina.

  • PDF

Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막의 신경전달물질 및 수용체, 뮬러세포 동정)

  • Lee, Jun-Seok;Kwon, Oh-Ju;Jeon, Tae-Heon;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.391-396
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the visual system of the greater horseshoe bat (Rhinolophus ferrumequinum) by location analysis of some major neurotransmitters glutamate, ${\gamma}$-aminobutyric acid (GABA), acetylcholine, and their receptors, and $m{\ddot{u}}ller$ glial cells in retina. Methods: Standard immunocytochemical techniques were used after vibratome section of retinal tissues of adult greater horseshoe bat for this study. Immnoreactions in immunofluorescence images were analyzed using confocal microscope. Results: Anti-glutamate-immunoreactive neurons were mainly localized in the ganglion cell layer (GCL). The majority of anti-GABA-immunoreactive cells distributed in the inner nuclear layer (INL), and GABAA receptors were localized in the inner plexiform layer (IPL). Anti-choline acetyltransferase-immuoreactive cholinergic neurons were mainly located in the INL and GCL, and most of nicotinic acetylcholine receptors were localized in the IPL. The $m{\ddot{u}}ller$ cells in the retina of the greater horseshoe bat stretched theirs range from the GCL to outer nuclear layer (ONL). Conclusions: This study revealed that the retinas of the greater horseshoe bats contain the same major neurotransmitters and receptors, and glial cell in visually functional mammalian retinas. The present results may suggest that the greater horseshoe bats have the functional retinas for visual analysis through the organized retinal neural circuits.

Ultrastructure of Brachial Ganglion in Korean Octopus, Octopus minor (한국산 낙지 (Octopus minor) 상완신경절의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.30 no.3
    • /
    • pp.265-272
    • /
    • 2000
  • In this study, the brachial ganglion of Octopus minor was investigated with light microscope and electron microscope,andthefollowingresultswereobtained. The brachial ganglions of the octopus, round in shapes , are located under each of suckers. Their sizes are proportional to those of the suckers. A brachial ganglion of round shape consists of cortex and medulla. In cortex, nerve cells exist collectively while neuropiles in medulla. Three kinds of nerve cells (large, middle, and small neurons) are found in the cluster of nerve cells. The small one is a round cell of about $0.9{\mu}m$ in diameter while the middle and large ones are an elliptical cell of $1.6\times1.3{\mu}m$ and an ovoid cell of $2.8{\mu}m$ in diameter, respectively. All of those cells look light due to their low electron densities , in which cell organelle are not well developed. It was also observed that the middle neurons are surrounded by median electron-dense neuroglial cells of pyramidal shapes and about $0.6\times0.4{\mu}m$ in sizes. In the neuropiles of medulla, dendrites and axons of various sizes make a complex net. They contain four kinds of chemical synaptic vesicles-electron-dense synaptic vesicle of 100 nm in diameter, median electron-dense synaptic vesicle of 90 nm in diameter, electron-dense cored synaptic vesicle of 90 nm in diameter, and electron-lucent synaptic vesicle of 50 nm in diameter.

  • PDF