• Title/Summary/Keyword: 신경자극

Search Result 752, Processing Time 0.02 seconds

Protective effect of Thymus quinquecostatus extracts UVB-induced matrix metalloproteinase-1 via suppressing MAPKs phosphorylation in human keratinocyte (사람의 각질세포에서 UVB 유도에 따른 MMP-1의 발현 조절과 MAPKs 인산화에 타임 추출물이 미치는 효과)

  • Jung, Hana;Jeong, Hyun Ju;Shin, Kyounghee;Kim, Yung Sun;Moon, Jae Heon;Lee, Tae Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.417-421
    • /
    • 2018
  • Ultraviolet rays are electromagnetic waves with a shorter wavelength than visible light, and ultraviolet rays that pass through the ozone layer are the main cause of skin aging. Chronic exposure of skin tissue to ultraviolet light activates the Mitogen-activated Protein Kinases (MAPKs) signaling pathways in human keratinocytes, resulting in increased production of matrix metalloproteinases (MMPs). In this study, we investigated the herbal extracts from Jeju Island on the anti-aging effect in human keratinocytes (HaCaTs) by ultraviolet stimulation. We examined that herb extract from Jeju Island were decreased in anti-aging activity on measuring the level of MMP-1 gene and protein expression in ultraviolet-induced keratinocytes. As a result, it was confirmed that Thymus quinquecostatus extract (TQE) significantly reduced the expression of MMP-1 in a dose-dependent manner by UV irradiated HaCaTs. According to our data, TQE significantly attenuated UV-induced phosphorylation of the MAPKs signaling elements ERK1/2, JNK1/2 and p38 proteins. These results suggest that the MAPKs pathway may contribute to the inhibitory effect of TQE on UV-induced MMP-1 production in human keratinocytes. Our results suggest that TQE may be a protective agent against skin aging by preventing UV-induced MMP-1 production.

Development of Turtle Neck Posture Correction Chair Through Posture Recognition (자세인지를 통한 거북목자세 교정의자 개발)

  • Lee, Jeong-Weon
    • Journal of Korean Society of Neurocognitive Rehabilitation
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 2018
  • Many people do not realize that they have poor neck posture. Incorrect forward head posture can lead to turtle neck. This aim to development of specific chair to reduce tension and other symptoms of turtle neck posture. This turtle neck syndrome adjusting chair is a chair that supports the hip and shin of a person to help them correct their posture. It is consisted of the shin support that supports the shin in an angle and the hip support that supports one's hip while the shin is supported at an angle, the main frame that has the two of them connected and the fluid seat that is joined at the top of the hip support and reacts accordingly to the shape of the hip. This is a posture correction chair which has the fluid seat that provides unstable hip support so that it can allow a person to realize their posture from the constant stimulation about the posture. When one seats on the posture correction chair, their hip and shin are supported at an angle that straitens their back, and as their back is straightened, their shoulders and chest are opened, and the neck is positioned at the middle to help them correct their posture. An unbalanced posture causes discomfort to the person seated at the chair, and the person sitting on the posture correction chair will continuously adjust his/her posture to balance the hips to keep the correct posture. Through this process, the person shall adjust his/her left and right posture, ultimately increasing the effectiveness of posture correction. A future collective study on the continuous posture correction of people having turtle neck syndrome using this posture correction chair is required.

Localization of Bilateral Hemisphere Lesion Using Combined Transcranial Magnetic Stimulation and Diffusion Tensor Imaging: Report of Two Cases (경두개 자기자극과 확산텐서 신경섬유로 검사를 통한 대뇌 병변의 국소화: 증례보고)

  • Lee, Hyung Nam;Oh, Young-Bin;Kim, Gi-Wook;Won, Yu Hui;Ko, Myoung-Hwan;Seo, Jeong-Hwan;Park, Sung-Hee
    • Journal of Electrodiagnosis and Neuromuscular Diseases
    • /
    • v.20 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • Transcranial magnetic stimulation (TMS) has been a gold standard for investigating central motor pathways in humans. Diffusion tensor imaging with fiber tractography (DTI FT) is known for its usefulness in detecting white matter lesion in vivo. We investigated the clinical usefulness of elucidating the integrity and continuity of corticospinal tract (CST) by combined use of TMS and DTI FT in this study. We report two cases who have presented with left hemiparesis and evaluated by both TMS and DTI FT; 10-year-old boy with Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episode syndrome and 20-year-old woman with traumatic brain injury. Combined use of TMS and DTI FT successfully led to localize the brain lesion that might cause motor impairment in patients with abnormal signal intensities in MRI. The results of this study suggest that TMS and DTI FT might provide the detailed information between function and anatomy of the CST, complementarily.

An Integrated Model for Predicting Changes in Cryptocurrency Return Based on News Sentiment Analysis and Deep Learning (감성분석을 이용한 뉴스정보와 딥러닝 기반의 암호화폐 수익률 변동 예측을 위한 통합모형)

  • Kim, Eunmi
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.19-32
    • /
    • 2021
  • Bitcoin, a representative cryptocurrency, is receiving a lot of attention around the world, and the price of Bitcoin shows high volatility. High volatility is a risk factor for investors and causes social problems caused by reckless investment. Since the price of Bitcoin responds quickly to changes in the world environment, we propose to predict the price volatility of Bitcoin by utilizing news information that provides a variety of information in real-time. In other words, positive news stimulates investor sentiment and negative news weakens investor sentiment. Therefore, in this study, sentiment information of news and deep learning were applied to predict the change in Bitcoin yield. A single predictive model of logit, artificial neural network, SVM, and LSTM was built, and an integrated model was proposed as a method to improve predictive performance. As a result of comparing the performance of the prediction model built on the historical price information and the prediction model reflecting the sentiment information of the news, it was found that the integrated model based on the sentiment information of the news was the best. This study will be able to prevent reckless investment and provide useful information to investors to make wise investments through a predictive model.

The Functional Role of Lysosomes as Drug Resistance in Cancer (항암제 내성에 대한 라이소좀의 역할)

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.527-535
    • /
    • 2021
  • Lysosomes are organelles surrounded by membranes that contain acid hydrolases; they degrade proteins, macromolecules, and lipids. According to nutrient conditions, lysosomes act as signaling hubs that regulate intracellular signaling pathways and are involved in the homeostasis of cells. Therefore, the lysosomal dysfunction occurs in various diseases, such as lysosomal storage disease, neurodegenerative diseases, and cancers. Multiple forms of stress can increase lysosomal membrane permeabilization (LMP), resulting in the induction of lysosome-mediated cell death through the release of lysosomal enzymes, including cathepsin, into the cytosol. Here we review the molecular mechanisms of LMP-mediated cell death and the enhancement of sensitivity to anticancer drugs. Induction of partial LMP increases apoptosis by releasing some cathepsins, whereas massive LMP and rupture induce non-apoptotic cell death through release of many cathepsins and generation of ROS and iron. Cancer cells have many drug-accumulating lysosomes that are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. Lysosomal sequestration of hydrophobic weak base anticancer drugs can have a significant impact on their subcellular distribution. Lysosome membrane damage by LMP can overcome resistance to anticancer drugs by freeing captured hydrophobic weak base drugs from lysosomes. Therefore, LMP inducers or lysosomotropic agents can regulate lysosomal integrity and are novel strategies for cancer therapy.

Dysphagia Rehabilitation Treatment for Children With Feeding Disorder : A Systemic Review (섭식장애가 있는 아동의 연하재활치료 : 체계적 고찰)

  • Jeon, Joo Young;Park, Hae Yean
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.19 no.1
    • /
    • pp.39-53
    • /
    • 2021
  • Objective : The purpose of this study was to systematically review dysphagia rehabilitation treatment for children with feeding disorders. Methods : The articles evaluated in this study were collected from the PubMed, Medline Complete, and CINAHL databases and subsequently reviewed using the PRISMA flow chart and PICOS approach. A total of 13 papers were analyzed for study quality, disease groups, evaluation tools, interventions, and post-intervention effects. Results : Of the reviewed papers, six (46.15%) related to autism spectrum disorder (ASD) and seven (53.85%) to cerebral palsy (CP) with age ranges of between 2 and 8 years for the ASD studies and between 12 months and 18 years for CP. In evaluating the types of feeding disorder involved, the ASD group exhibited predominantly behavioral conditions while the CP subjects had a larger number of functional oral and swallowing issues. In terms of interventions, behavior modifications were used most frequently with ASD while oral-sensory motor, texture modifications, and electrical stimulation were applied at the same frequency with children with CP. All interventions were found to be effective. Conclusion : In this study, research into children with feeding disorders was reviewed according to condition, evaluation tool, and method of intervention. It is expected that this review can be used as basic data for developing a protocol that will allow clinicians to efficiently apply condition-specific interventions for eating disorders without resorting to trial and error.

Opioids and Antidepressants for Pain Control in Musculoskeletal Disease (근골격계 질환에서 통증 조절을 위한 마약성 진통제 및 항우울제)

  • Park, Se-Jin;Kim, Woo Sub;Jang, Taedong
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The progression of aging and the increase in musculoskeletal diseases have led to an increase in invasive treatment methods, including various surgical methods, but conservative treatment should be attempted before surgical treatment in musculoskeletal diseases. Medication for pain control, such as acetaminophen, non-steroidal anti-inflammatory drugs, steroid, opioids, antidepressants, etc., is one of the most popular methods for pain control. If the pain receptors on peripheral organ are stimulated, pain is transmitted to the brain by the ascending pathway, and the brain then secretes endogenous opioids, such as endorphin, by the descending pathway for pain control. Opioids are substances that act on the opioid receptors, and there are three receptors for opioids. The affinity for each receptor varies according to the tissue and the patient's systemic status. Antidepressants work on the synapses in the central nervous system and its main mechanism is regulation of the ascending pathway. This is mainly effective in chronic pain and neuropathic pain, which is similar in effectiveness to opioids. This review focuses on the effectiveness, method of use, and side effects of opioids and antidepressants.

Antimicrobial Peptide CopA3 Induces Survivin Expression in Human Colonocytes Through the Transcription Factor Sp1 (인간 대장상피세포에서 항균펩타이드 CopA3에 의한 survivin 발현 조절 기작 규명)

  • Kim, Ho
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • CopA3 (LLCIALRKK), an antimicrobial peptide isolated from the Korean dung beetle, has been shown to suppress apoptosis in various cell types. CopA3 inhibits not only bacterial toxin-induced colonocyte apoptosis but also 6-hydroxy dopamine-induced neural cell apoptosis. Our recent study revealed that CopA3 directly binds to caspases (key regulators of apoptosis) and inhibits the proteolytic cleavage required for their activation. But molecular mechanisms underlying CopA3-mediated inhibition of apoptosis in multiple cell types remain unknown. Here we assessed possible effects of CopA3 on expression of survivin, which is known to inhibit apoptosis. In HT29 human colonocytes, CopA3 exposure markedly upregulated survivin expression in a concentration- and time-dependent manner. RT-PCR revealed that CopA3-mediated upregulation of survivin was attributable to increased gene transcription, and further showed that CopA3 also increased expression of Sp1, one of many transcription factors known to be involved in transcription of the survivin gene. Notably, blocking Sp1 by treatment with the Sp1 inhibitor, tolfenamic acid, significantly reduced CopA3-mediated upregulation of survivin. These results collectively suggest that CopA3 induces Sp1 expression, which in turn is involved in upregulation of survivin in human colonocytes. These novel findings establish another pathway for explaining the anti-apoptotic effects of CopA3 against various cellular apoptosis systems.

Metabolic Signaling by Adipose Tissue Hormones in Obesity (비만에서 adipose tissue 호르몬에 의한 metabolic signaling)

  • Younghoon Jang
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.287-294
    • /
    • 2023
  • Healthy adipose tissue is critical for preventing obesity by maintaining metabolic homeostasis. Adipose tissue plays an important role in energy homeostasis through glucose and lipid metabolism. Depending on nutritional status, adipose tissue expands to store lipids or can be consumed by lipolysis. The role of adipose tissue as an endocrine organ is emerging, and many studies have reported that there are various adipose tissue hormones that communicate with other organs and tissues through metabolic signaling. For example, leptin, a representative peptide hormone secreted from adipose tissues (adipokine), circulates and targets the central nervous system of the brain for appetite regression. Furthermore, adipocytes secrete inflammatory cytokines to target immune cells in adipose tissues. Not surprisingly, adipocytes can secrete fatty acid-derived hormones (lipokine) that bind to their specific receptors for paracrine and endocrine action. To understand organ crosstalk by adipose tissue hor- mones, specific metabolic signaling in adipocytes and other communicating cells should be defined. The dysfunction of metabolic signaling in adipocytes occurs in unhealthy adipose tissue in overweight and obese conditions. Therapy targeting novel adipose metabolic signaling could potentially lead to the development of an effective anti-obesity drug. This review summarizes the latest updates on adipose tissue hormone and metabolic signaling in terms of obesity and metabolic diseases.

Effects of Repetitive High Frequency Motor Cortex Transcranial Magnetic Stimulation and Cortical Disinhibition in Diabetic Patients with Neuropathic Pain: A Case Control Study (신경병성 통증이 있는 당뇨 환자에서 반복 경두개 자기자극치료의 효과 및 피질 탈억제 현상: 환자 대조군 연구)

  • Han, Yong;Lee, Chan Ho;Min, Kyung Wan;Han, Kyung Ah;Choi, Hyo Seon;Kang, Youn Joo
    • Clinical Pain
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Objective: To investigate the cortical disinhibition in diabetic patients with neuropathic pain and without pain. In addition, we assessed the cortical disinhibition and pain relief after repetitive transcranial magnetic stimulation (rTMS). Method: We recruited diabetic patients with neuropathic pain (n = 15) and without pain (n = 15). We compared the TMS parameters such as motor evoked potential (MEP) amplitude, cortical silent period (CSP), intracortical inhibition (ICI %) and intracortical facilitation (ICF %) between two groups. Moreover, we evaluated the changes of pain and TMS parameters after five consecutive high frequency (10 Hz) rTMS sessions in diabetic patients with neuropathic pain. The neuropathic pain intensity (visual analog scale) and TMS parameters were assessed on pre-rTMS, post-rTMS 1day, and post-rTMS 5 day. Results: The comparison of the CSP, ICI % revealed significant differences between two groups (p<0.01). After rTMS sessions, the decrease in pain intensity across the three time points revealed a pattern of significant differences (p<0.01). The change of CSP and ICI % across the three test points revealed a pattern of significant differences (p<0.01). The ICI % revealed immediate increase after first rTMS application and significant increase after five rTMS application (p<0.01) in diabetic patients with neuropathic pain. The MEP amplitude and ICF % did not reveal any significant changes. Conclusion: Our findings demonstrate that cortical inhibition was decreased in diabetic patients with neuropathic pain compared with patients without pain. Furthermore, we also identified that five daily rTMS sessions restored the defective intracortical inhibition which related to improvement of neuropathic pain in diabetic patients.