• Title/Summary/Keyword: 신경세포 배양

Search Result 204, Processing Time 0.023 seconds

Effect of growth hormone on neuronal death in hippocampal slice cultures of neonatal rats exposed to oxygen-glucose deprivation (신생 흰쥐 해마 절편 배양에서 산소-포도당 박탈에 의한 신경 세포 사망에 대한 성장호르몬의 효과)

  • Hong, Kyung Sik;Gang, Jihui;Kim, Myeung Ju;Yu, Jeesuk;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.588-593
    • /
    • 2009
  • Purpose : To investigate whether growth hormone (GH) has a protective effect on neurons in hippocampal slice cultures of neonatal rats exposed to oxygen-glucose deprivation (OGD). Methods : Cultured hippocampal slices of 7-day-old rats were exposed to OGD for 60 min. Then, the slices were immediately treated with three doses of GH (5, 50, or $500{\mu}M$) in media. The relative fluorescent densities of propidium iodide (PI) uptake in the slices and relative lactate dehydrogenase (LDH) activities in the media were determined and compared between each GH- treated group of slices and untreated slices (control) at 12 and 24 h after OGD. Immunofluorescent staining for caspase-3 and TUNEL staining were performed to observe the effect of GH on apoptotic neuronal death. Results : The relative fluorescent densities of PI uptake in CA1 and dentate gyrus (DG) of the hippocampal slices in each GH-treated group were not significantly different from those in the untreated slices at 12 and 24 h after OGD (P>0.05). Treatment with GH could reduce the relative LDH activities in the media of the GH-treated groups only at 12 h after OGD (P<0.05). Expression of caspase-3 and TUNEL positivity in CA1 and DG of the slices treated with 50-iM GH were not different from those of the untreated slices at 12 and 24 h after OGD. Conclusion : Treatment of hippocampal slice cultures with GH after OGD does not show a definitive protective effect on neuronal death but can reduce the LDH efflux of the slices in media at 12 h after OGD.

Preparation and Release Profile of N8f-loaded Polylactide Scaffolds for Tissue Engineered Nerve Regeneration (조직공학적 신경재생을 위한 NGF를 함유한 PLA 담체의 제조 및 방출)

  • 전은경;황혜진;강길선;이일우;이종문
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.893-901
    • /
    • 2001
  • We developed the nerve growth factor (NGF) loaded poly (L - lactide) (PLA) scaffolds by means of emulsion freeze drying method to the possibility for the application of the nerve regeneration of spinal cord disease and the degeneration in Alzheimer's disease. The release amount of NGF from NGF loaded PLA scaffold were analyzed over a 4 week period in vitro at phosphate buffered saline (PBS), pH 7.4, at $37^{\circ}C$. It can be observed the open cell pore structure of porous scaffolds and can be easily controlled the pore structure by the controlling of formulation factors resulting in the controlling of the release rate and the release period. The stability of NGF during the preparation of PLA scaffold was evaluated by comparing the released amounts of total NGF, assayed NGF enzyme - linked immunosorbent assay (ELISA). Released NGF has been found to enhance the neurite sprouting and outgrowth from pheochromocytoma (PC-12) cells. These results suggest that the released NGF from NGF loaded PLA scaffold such as conduit type can be very useful for the nerve regeneration in the neural tissue engineering area.

  • PDF

배양된 해마 신경세포의 성장에 대한 납의 영향

  • 김율아;김종곤;김용식;김영희;송동근
    • Toxicological Research
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 1993
  • Lead is an environmental toxicant that causes a marked deficit in cognative development in infants and children. Damage to the hippocampus has been linked to the lead-induced deficit in the learning process. The present study examined the effects of lead on the development of hippocampal neurons in vitro. Hippocampal neurons were incubated with various concentrations in lead acetate (1nM to 30 nM) for 72 hrs from 4 h after plating, and the percentage of living neurons bearing neurites, neurite outgrowth and migration of multipolar neurons in culture were determined.

  • PDF

Taurine exerts neuroprotective effects via anti-apoptosis in hypoxic-ischemic brain injury in neonatal rats (신생 흰쥐의 저산소성 허혈성 뇌손상에서 항세포사멸사를 통한 taurine의 신경보호 효과)

  • Jeong, Ji Eun;Kim, Tae Yeol;Park, Hye Jin;Lee, Kye Hyang;Lee, Kyung Hoon;Choi, Eun Jin;Kim, Jin Kyung;Chung, Hai Lee;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.12
    • /
    • pp.1337-1347
    • /
    • 2009
  • Purpose:Taurine (2-aminoethanesulfonic acid) is a simple sulfur-containing amino acid. It is abundantly present in tissues such as brain, retina, heart, and skeletal muscles. Current studies have demonstrated the neuroprotective effects of taurine, but limited data are available for such effects during neonatal period. The aim of this study was to determine whether taurine could reduce hypoxic-ischemic (HI) cerebral injury via anti-apoptosis mechanism. Methods:Embryonic cortical neurons isolated from Sprague-Dawley (SD) rats at 18 days gestation were cultured in vitro. The cells were divided into hypoxia group, taurine-treated group before hypoxic insult, and taurine-treated group after HI insult. In the in vivo model, left carotid artery ligation was performed in 7-day-old SD rat pups. The pups were exposed to hypoxia, administered an injection of 30 mg/kg of taurine, and killed at 1 day, 3 days, 1 week, 2 weeks, and 4 weeks after the hypoxic insult. We compared the expressions of Bcl-2, Bax, and caspase-3 among the 3 groups by using real- time polymerase chain reaction (PCR) and western blotting. Results:The cells in the taurine-treated group before hypoxic insult, although similar in appearance to those in the normoxia group, were lesser in number. In the taurine-treated group, Bcl-2 expression increased, whereas Bax and caspase-3 expressions reduced. Conclusion:Taurine exerts neuroprotective effects onperinatal HI brain injury due to its anti-apoptotic effect. The neuroprotective effect was maximal at 1-2 weeks after the hypoxic injury.

Multisystemic Aspergillosis with Granulomas in Layer Chickens (산란계에서의 전신 다발성 육아종성 Aspergillosis 발생)

  • Kim, Ji-Ye;Kim, Jong-Man;Mo, In-Pil
    • Korean Journal of Poultry Science
    • /
    • v.38 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • A case of aspergillosis in 39-day-old layer chickens having a history of gradual emaciation and subsequently death with nervous signs such as torticollis and lack of equilibrium was documented. Based on the results from serology and polymerase chain reaction (PCR) test, this flock was not affected with known viral or bacterial diseases. On postmortem examination of the affected birds, multiple white to yellow nodules measuring 1~5 mm in diameter were observed in the lungs, cerebrum, liver and kidney. Microscopically, these nodules were identified as granulomatous lesions characterized by mixed population of multinucleated giant cells and lymphocytes. By periodic acid-schiff staining and nucleotide sequencing analysis, Aspergillus flavus with characteristic septate and branched hyphae were identified in the granuloma of lung and cerebrum. This case was a chronic and multisystemic aspergillosis specialized to central nervous system caused by Aspergillus flavus infection in the layer flocks.

The Effect of Transplantation of Schwann Cell and SIS Sponge on the Injured Peripheral Nerve Regeneration (슈반세포와 SIS 스폰지의 이식이 손상된 말초 신경 재생에 미치는 영향)

  • Kim, Cho-Min;Kim, Soon-Hee;Kim, Su-Mi;Park, Sang-Wook;Lee, Il-Woo;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • It is recognized that Schwann cells (SC) are essential for peripheral nerve development and regeneration. SIS (small intestinal submucosa) consists of some growth factors which can stimulate cell activity without immune rejection responges. SCs were harvested from the femurs and tibias of female Fischer rat and then suspended with $2{\times}10^6$ cell/sponge in SIS sponge. Fischer rat received an implant consisting of the SCs and the SIS sponge at the place of a 5 mm gap created by the sciatic nerve resection. Thin sections were stained with H &E staining and immunostaining of S-100, GFAP and NF after 1, 2, and 4 weeks. It was observed that the effects of the SIS sponge with SCs on neuroinduction(Group II, with scaffold & cell) are strong as much as uninjured model(Control I), and significantly stronger than SIS sponge model (Group 1, with scaffold only) and blank model (Control II). In conclusion, these results suggest that SIS sponge filled with SCs may have an important role for peripheral nerve regeneration of tissue engineering.

TGF-$\alpha$로 분화 유도된 인간 배아줄기세포 이식에 따른 파킨슨 동물 모델 생쥐의 행동 개선

  • 이금실;김용식;신현아;조황윤;김은영;이원돈;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.271-271
    • /
    • 2004
  • 본 실험은 TGF-a를 처리하여 분화가 유도된 인간배아 줄기세포를 파킨슨 동물모델에 이식하여 숙주세포에서의 생존 및 이식효과를 검토하고자 실시하였다. TGF-a로 분화된 세포의 이식효과를 판정하고자 배양시 TGF-a처리군과 처리하지 않은 군으로 나누어 분화를 유도한 인간배아 줄기세포를 hoechst33342로 표지 하여 병변 유발과 동일한 방법으로 동측 선조체내에 4×10⁴개/2ul가 되도록 이식하고(이식 위치: AP 0.7, ML 2.0, DV3.4) 이식 후 2, 4주에서 행동학적 변화를 관찰하고 4주에 동물을 희생시켜 4% PFA를 이용하여 뇌 조직을 고정하고 뇌 조직은 40㎛ 두께로 동결 절편을 만들어 면역조직화학염색을 시행하여 신경세포로의 분화 및 TH 발현 여부를 관찰하였고 분화의 표지물질로 nestin, NF200, GFAP, TH를 사용하여 형태학적 변화를 관찰하였다. (중략)

  • PDF

Activation of Cytosolic Phospholipase $A_2$ by Methyl Mercury($CH_3$HgCl) in Madin Darby Canine Kidney (MDCK) cells

  • Kang, Mi-sun;Seo, Ji-Heui;Huh, Don-Hang;Kim, Dae-Kyong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.79-79
    • /
    • 1997
  • 자연계에 존재하는 수은중 유기수은은 생태계 먹이사슬을 통하여 체내의 여러장기에 축적되어 조직손상을 일으키는 것으로 잘 알려져 있다. 그러나 이러한 세포독성에 대한 정확한 생화학적 기전에 대해서는 자세히 알려진 바가 없다. 포스포리파아제 $A_2$(PLA$_2$)는 세포막의 인지질로부터 Arachidonic acid (AA)와 Lysophospholipid를 유리시키는 효소로 최근 세포손상과 관련하여 그 역할이 주목되고 있으며, 극히 최근, 일차배양 소뇌신경세포를 이용한 연구에서 메칠수은처리에 의해 세포독성의 지표인 Lactate dehydrogenase (LDH)의 유리와 함께 AA 유리가 증가되는 것이 관찰되었으나 여러형태의 PLA$_2$중 어느형태의 효소가 관련되어 있는지, 또한, 그 자세한 기전에 대해서는 불분명한 점이 많다. 본 연구에서는 신장세포의 일종인 MDCK세포를 이용하여 메칠수은의 처리에 의한 PLA$_2$의 활성화 및 그 생화학적인 기전을 구명하고자 하였다. [$^3$H]AA를 MDCK세포의 배양액에 첨가하여 라벨링한 후 메칠수은을 처리하였을때 [$^3$H]AA가 대조군에 비해 농도의존적 및 경시적으로 현저하게 증가하였으며 동시에 LDH의 유리도 함께 관찰되었다. 이러한 [$^3$H]AA의 유리 증가는 세포질 PLA$_2$에 특이적인 저해제로 알려진 AACOCF$_3$의 전처리에 의해 거의 완전히 억제되었으나 LDH의 유리는 오히려 증가하였다. 또한, 글루타치온(GSH)의 전구체인 NAC (N-Acetyl Cysteine)에 의해 [$^3$H]AA의 유리는 부분적으로 감소하였으나, LDH의 유리는 변함이 없었다. 돼지비장이나 MDCK 세포에서 얻어진 세포질 PLA$_2$에 메칠수은을 직접 처리하였을때는 오히려 PLA$_2$의 활성은 감소되었다. 위의 결과들로부터 메칠수은에 의한 [$^3$H]AA의 유리 증가는 세포질 PLA$_2$효소에 대한 직접적인 작용이 아니라 세포내 -SH기의 차단이나 Oxidative Stress에 의해 간접적으로 활성화되는 것으로 예상되며, 세포질 PLA$_2$에 의해 유리된 AA의 세포독설과 관련된 세포내의 역할에 대해 의문이 제기되었다.

  • PDF

White Ginseng Saponin Upregulated the Production of -TNFTNF-α, IL-1β and NO in Primary Cultures of Mixed Glial Cells (고려인삼에 의한 신경면역 및 염증반응 조절: 백삼사포닌에 의한 교세포에서의 TNF-α, IL-1β 및 NO 생성 증가)

  • 성정훈;최동희;김동훈;전보권;최상현
    • Journal of Ginseng Research
    • /
    • v.28 no.2
    • /
    • pp.120-126
    • /
    • 2004
  • Glial cells such as astrocytes and microglial cells are the main source of proinflammatory cytokines and nitric oxide(NO) in the central nervous system, which exert neuroimmune and inflammatory functions and other various neurobiologic effects. Though Panax ginseng C.A. Meyer has been known to strengthen the body's defence mechanisms and also to maintain the homeostasis in the central nervous system, the effects of Panax ginseng on the production of immune and inflammatory mediators have not been studied well in the brain. Therefore, this study was designed to study the effects of ginseng saponins on the production of proinflammatory cytokines and NO in the primary cultures of mixed glial cells. White ginseng saponin, 200-500 $\mu$g/ml, showed significant cytotoxicity after 72 hrs and increased TNF-$\alpha$, IL-$\beta$, and NO production. Lower doses of 50-100 $\mu\textrm{g}$/ml showed little cytotoxicity until 72 hrs and also increased the production of TNF-$\alpha$, IL-1$\beta$, and NO. Triple immune staining showed that white ginseng saponin, 200$\mu\textrm{g}$/ml for 72 ks, induced stellation of astrocytes and iNOS expression exclusively in microglial cells. Taken together, the white ginseng saponin increased the production of proinflammatory cytokines such as TNF-$\alpha$ and IL-1$\beta$, and induced iNOS expression and NO production in mixed glial cell cultures, which may be ascribed to the enhancement of central immune responses and the regulation of inflammatory reactions by Panax ginseng.