• 제목/요약/키워드: 신경세포의 반응

검색결과 293건 처리시간 0.031초

Histochemically-reactive Zinc in the Rat Dorsal Root Ganglion (DRG) Neurons: Zinc Selenium Autometallography (랫드 척수신경절내 zinc의 분포양상: Zinc Selenium Autometallography)

  • Kim, Yi-Suk;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • 제40권1호
    • /
    • pp.15-19
    • /
    • 2010
  • The present study was designed to demonstrate ionic zinc in the rat DRG by means of zinc selenium autometallography($ZnSe^{AMG}$). Ganglion cells varied in size from 15 to 100 ${\mu}m$. The smaller neurons were strongly stained with AMG, whereas the larger cells were weakly stained. Each large ganglion cell was surrounded by perineuronal satellite cells, showing apparent AMG staining. We demonstrated for the first time the existence of zinc-containing satellite cells in the rodent DRG. Using electron microscopy, fine AMG grains were observed scattered in the somata of the DRG neurons, especially small cells. However, much lower concentrations of the AMG grains occupied in the large cells, and these were mostly localized in lysosome-like organelles. These results indicate that zinc may be involved in sensory transmission in the DRG level.

Immuno-Electron Microscopic Studies on the Localization of Serotonin and Somatostatin in the Optic Lobes of Cephalopods (Todarodes pacificus and Octopus minor) Inhabiting the Korean Waters (한국 연근해산 두족류 (Todarodes pacificus and Octopus minor) 시엽 (Optic lobe)내 Serotonin 및 Somatostatin의 분포에 관한 면역전자현미경적 연구)

  • Chang, Nam-Sub;Han, Jong-Min;Kim, Sang-Won;Lee, Kwang-Ju;Hwang, Sun-Jong;Lee, Jung-Chan
    • Applied Microscopy
    • /
    • 제32권3호
    • /
    • pp.247-255
    • /
    • 2002
  • In this study, we carried out immunostaining and immunogold labeling with antibodies to serotonin and somatostatin to examine the characteristics and functions of the neurons that secrete neurotransmitters in optic lobes of Todarodes pacificus and Octopus minor. As a result of immunostaining with anti-somatostatin, the nerve cells of Todarodes pacificus reacted as similar to the anti-serotonin, but in Octopus minor, only large cells in the outer granule cell layer reacted positively. In the immunogold labeling with anti-serotonin, the nerve cells in the inner grande cell layer and medulla of Todarodes pacificus reacted strongly, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm. However, in Octopus minor, only 17 gold particles were labeled, which stated a weak reaction. On the other hand, in the anti-somatostatin case, the nerve cells in the outer and inner granule cell layers and medulla of Todarodes pacificus showed strong reaction, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm while the nerve cells in the outer granule cell layer of Octopus minor reacted weakly, about 3 gold particles being labeled per the equivalent area. As a result of immunostaining and immunogold labeling with two types of antibodies to each part of the optic lobes, we found that the reactive nerve cells were distributed differently in the two species. In particular, the degree of reactivity to the immunostaining and immunogold labeling appeared stronger in Todarodes pacificus than in Octopus minor.

Neural and Cholinergic Differentiation of Mesenchymal Stem Cells Derived from the Human Umbilical Cord Blood (인간 제대혈액에서 유래된 중간엽 줄기세포의 신경 및 콜린성 분화)

  • Kam, Kyung-Yoon;Kang, Ji-Hye;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • 제11권3호
    • /
    • pp.235-243
    • /
    • 2007
  • Human umbilical cord blood(HUCB) contains a rich source of hematopoietic stem cells, mesenchymal stem cells and endothelial cell precursors. Mesenchymal stem cells(MSCs) in HUCB are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. We studied on transdifferentiation-promoting conditions in neural cells and cholinergic neuron induction of HUCB-derived MSCs. Neural differentiation was induced by addingdimethyl sulphoxide(DMSO) and butylated hydroxyanisole(BHA) in Dulbeco's Modified Essential Medium(DMEM) and fetal bovine serum(FBS). Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor(bFGF), retinoic acid(RA) and sonic hedgehog(Shh). MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including $\beta$-tubulin III, GFAP and MBP, was markedly elevated during this acute differentiation. The differentiation rate was about $32.3{\pm}2.9%$ for $\beta$-tubulin III-positive cells, $11.0{\pm}0.9%$ for GFAP, and $9.4{\pm}1.0%$ for Gal-C. HUCB-MSCs treated combinatorially with bFGF, RA and Shh were differentiated into cholinergic neurons. After cholinergic neuronal differentiation, the $\beta$-tubulin III-positive cell population of total cells was $31.3{\pm}3.2%$ and of differentiated neuronal population, $70.0{\pm}7.8%$ was ChAT-positive showing 3 folds higher in cholinergic population than neural induction. Conclusively, HUCB-derived MSCs can be differentiated into neural and cholinergic neurons and these findings suggest that HUCB are alternative cell source of treatment for neurodegenerative diseases such as Alzheimer's disease.

  • PDF

Ultrastructural Localization of GABAergic Neuronal Components in the Dog Basilar Pons (개의 교핵내 GABA성 신경세포 성분의 미세구조적 위치관찰)

  • Lee, Hyun-Sook
    • Applied Microscopy
    • /
    • 제25권1호
    • /
    • pp.65-74
    • /
    • 1995
  • An immunocytochemical study of GABA-positive neuronal elements was performed at the electron microscopic level to examine subcellular distribution of the inhibitory neurotransmitter in the dog basilar pons. Electron-dense reaction product was observed in neuronal somata and dendritic processes. One or more unlabeled axon terminals made asymmetric synaptic contacts with these GABAergic somatic and dendritic profiles. A large number of GABA-positive axon terminals were also observed. They made symmetric as well as asymmetric synaptic contacts with unlabeled dendritic profiles. In axo-axonic synapses, postsynaptic axon-like processes were consistently GABA-immunoreactive. These observations suggest that the inhibitory local circuit neurons in the dog basilar pons play a major role in cerebro-ponto-cerebellar circuitry by integrating various afferent inputs and conveying them into the cerebellar cortex and the deep cerebellar nuclei.

  • PDF

The Morphologic Changes of Parvalbumin- Immunoreactive Interneurons of the Dentate Gyrus in Kainate-Treated Mouse Hippocampal Slice Culture Epilepsy Model (Kainic Acid로 처리한 해마박편배양 마우스 간질모델에서 치아이랑 Parvalbumin 면역 반응성 사이신경세포의 형태학적 변화)

  • Chung, Hee Sun;Shin, Mi-Young;Kim, Young-Hoon;Lee, In-Goo;Whang, Kyung-Tai;Kim, Myung-Suk
    • Clinical and Experimental Pediatrics
    • /
    • 제45권12호
    • /
    • pp.1551-1558
    • /
    • 2002
  • Purpose : Loss of hippocampal interneurons in dentate gyrus has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainic acid(KA). Interneurons contain $Ca^{2+}$- binding protein parvalbumin(PV). The effects of kainic acid on parvalbumin-immunoreactive (PV-IR) interneurons in dentate gyrus were investigated in organotypic hippocampal slice cultures. Methods : Cultured hippocampal slices from postnatal day nine C57/BL6 mice were exposed to $10{\mu}M$ KA, and were observed at 0, 8, 24, 48, 72 hours after a one hour KA exposure. Neuronal injury was determined by morphologic changes of PV-IR interneuron in dentate gyrus. Results : Transient(1 hour) exposure of hippocampal explant cultures to KA produced marked varicosities in dendrites of PV-IR interneuron in dentate gyrus and the shaft of interbeaded dendrite is often much thinner than those in control. The presence of varicosities in dendrites was reversible with KA washout. The dendrites of KA treated explants were no longer beaded at 8, 24, 48 and 72 hours after KA exposure. The number of cells in PV-IR interneurons in dentate gyrus was decreased at 0, 8 hours after exposure. But there was no significant difference in 24, 48 and 72 hours recovery group compared with control group. Conclusion : The results suggested that loss of PV-IR interneurons in dentate gyrus is transient, and is not accompanied by PV-IR interneuronal cell death.

Neuropeptide Y-immunoreactive neurons in corpus striatum of the Korean squirrel(sciurus vulgalis coreae) (청서 뇌 줄무늬체에서 neuropeptide Y 면역반응신경세포의 분포)

  • Jeong, Young-gil;Lee, Nam-seob;Hyun, Byung-hwa;Lee, Chul-ho;Oh, Yang-seok;Kim, Moo-kang;Won, Moo-ho
    • Korean Journal of Veterinary Research
    • /
    • 제36권1호
    • /
    • pp.39-49
    • /
    • 1996
  • The present study was performed to investigate the distribution of neuropeptide Y immunoreactivities in the corpus striatum of the Korean squirrels. The animals were perfused with 4%-paraformaldehyde and the brain was cut serially into $40{\mu}m$ thick coronal sections. Sections either were stained with cresyl violet or were stained immunohistochemically. The corpus striatum was divided into the caudate nucleus, putamen and globus pallidus. Anterior part. however, of the striatum was observed as the combined caudate-putamen. NPY immunoreactive (NPY-IR) neurons were medium-sized. The corpus striatum contained a low level of NPY-IR fibers, whose distribution appeared to be related to the immunoreactive perikarya. Large numbers of NPY-IR neurons in the caudate-putamen and caudate nucleus were expressed in medial and ventral parts. In the anterior part of the putamen NPY-IR neurons were scattered throughout the nucleus; in posterior part were found generally in the lateral and ventral parts. The density of NPY-IR fibers of the putamen were low, whose distribution appeared to be related to the perikarya. The globus pallidus contained NPY-IR fibers only in the lowest density. In brief, NPY-immunoreactivities in the corpus striatum are heterogenous in distribution. These findings may reflect innate characteristics of the specific neural circuit in the corpus striatum itself.

  • PDF

Cellular and Biochemical Mechanism of Perinatal Hypoxic-Ischemic Brain Injury (주산기 저산소-허혈 뇌손상의 세포 생화학적 기전)

  • Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • 제45권5호
    • /
    • pp.560-567
    • /
    • 2002
  • 주산기 뇌손상은 주로 급격한 저산소-허혈 손상에 의하는데 급격한 산소 공급의 차단은 oxidative phosphorylation을 정지 시켜서 뇌대사를 위한 에너지 공급이 차단되게 된다. 에너지 공급이 차단된 뇌세포는 뇌세포막에서 세포 내외의 이온 농도 차를 유지시키던 ATP-dependent $Na^{+}-K^{+}$ pump의 기능이 정지 되고, 세포 내외의 농도 차에 따라 $Na^{+}$, $Cl^{+}$, $Ca^{{+}{+}}$의 대규모 세포 내로 이동이 일어난다. 세포 내로 calcium 이온의 이동은 glutamate 수용체의 활성화에 의해서도 일나는데, 세포 내 calcium 이온의 증가는 protease, lipase, nuclease 등을 활성화 시켜 세포를 사망에 이르게 하는 연속적이고 다양한 생화학적 반응을 일으키게 된다. Glutamate는 대표적인 신경 전달 물질인데 저산소-허혈 손상 시 glutamate 수용체의 지나친 흥분은 미성숙 뇌에 뇌손상을 유발하는데, NMDA 또는 non-NMDA 수용체와 복합체를 형성하고 있는 calcium 이동 통로를 활성화 시켜 세포 내 calcium 이온을 증가시키고, 그 외에 metabotropic recetor는 G-protein의 활성화 등을 통해 뇌손상을 유발하는 다양한 생화학적 반응을 매개한다. 저산소-허혈 손상 후 재산소화와 재관류가 일어나면서 뇌세포의 지연성 사망(secondary neuronal death)이 일어나는데 이는 초기 손상 후 뒤이어 일어나는 다양한 생화학적 반응에 의하는데 다량의 산소 자유기 발생, nitric oxide의 생성, 염증 반응과 싸이토카인, 신경전도 물질의 과흥분 등이 관여하며, 신경 세포 사망은 세포괴사(necrosis)뿐 아니라 일부는 세포 사멸(apoptosis)로 알려진 의도된 세포 사망(programmed cell death)에 의한 것으로 생각되고 있다(Fig. 2).

척수에서의 통각전달체계 연구

  • 오우택;최윤정
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 한국응용약물학회 1992년도 제1회 신약개발 연구발표회 초록집
    • /
    • pp.29-29
    • /
    • 1992
  • 척수에서의 통각전달은 말초에서 전달되는 통각정보가 척수내의 척수세포에 전달되면서 시작된다. 척수에 전달된 유해자극 정보는 척수내의 이차감각세포를 통하여 시상으로 전달되고 이로 인해 통증을 느끼게 된다. 이러한 척수내의 세포는 연수등의 여러 부위에 존재하는 신경 세포에 의하여 억제를 받으며 이와 같은 하향성 억제는 뇌에 존재하는 내재진 통계를 설명하는 중요한 인자가 되고 있다. 본 실험은 하부연수에 위치하는 신경핵인 Lateral reticular nucleus가 이러한 하향성 억제를 가졌는가를 알아 보고자 하였다. 이를 위하여 고양이를 마취시키고 척수궁을 절제하여 척수를 노출시키고 미세전극을 꽂아 척수세포의 활성을 기록하였다. 여덟마리의 고양이에서 31개의 척수세포를 기록하였다. 이 세포들 중 WDR세포가 14 (45%), HT가 9 (29%), LT 및 Deep세포가 각각 4 (13%)가 되었다. 이 척수세포에 북외측하부 연수인 lateral reticualr nucleus 주위를 건기자극하면 21개 (68%)의 세포가활성의 억제를 받았고 9개의 (29%) 세포는 아무런 변화가 없었고 1개의 (3%) 세포는 흥분되었다. 전기의 자극은 강도 100$\mu$A이며 자극길이는 100$\mu$S 그리고 100Hz의 주파수를 가진 펄스파였다. 이와같은 북외측하부연수의 전기자국은 신경세포의 자발활성뿐 아니라 수용장 자극에 의한 반응도 억제하였다.

  • PDF

Waveform Sorting of Rabbit Retinal Ganglion Cell Activity Recorded with Multielectrode Array (다채널전극으로 기록한 토끼 망막신경절세포의 활동전위 파형 구분)

  • Jin Gye Hwan;Lee Tae Soo;Goo Yang Sook
    • Progress in Medical Physics
    • /
    • 제16권3호
    • /
    • pp.148-154
    • /
    • 2005
  • Since the output of retina for visual stimulus is carried by neurons of very diverse functional properties, it is not adequate to use conventional single electrode for recording the retinal action potential. For this purpose, we used newly developed multichannel recording system for monitoring the simultaneous electrical activities of many neurons in a functioning piece of retina. Retinal action potentials are recorded with an extra-cellular planar array of 60 microelectrodes. In studying the collective activity of the ganglion cell population it is essential to recognize basic functional distinctions between individual neurons. Therefore, it is necessary to detect and to classify the action potential of each ganglion cell out of mixed signal. We programmed M-files with MATLAB for this sorting process. This processing is mandatory for further analysis, e.g. poststimulus time histogram (PSTH), auto-correlogram, and cross-correlogram. We established MATLAB based protocol for waveform classification and verified that this approach was effective as an initial spike sorting method.

  • PDF

Retrograde Tracer Studies of Tecto-Reticulospinal Pathway and Dorsal Lateral Geniculate Nucleus on GluR1- and GluR4-Immunoreactive Neurons in the Hamster Superior Colliculus (Tecto-reticulospinal pathway (TRS)와 dorsal lateral geniculate nucleus (dLGN)에서 역행성이동추적물질 이용 햄스터 상구에서 GluR1-, GluR4- 면역반응 신경세포 연구)

  • Choi, Jae-Sik;Lee, Jea-Young;Jang, Yu-Jin;Lee, Eun-Shil;Jeon, Chang-Jin
    • Journal of Life Science
    • /
    • 제20권1호
    • /
    • pp.1-8
    • /
    • 2010
  • We recently reported the distributions of AMPA ($\alpha$-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptor subtypes glutamate receptors (GluR) 1 and GluR4 in the superior colliculi (SC) of hamsters with antibody immunocytochemistry and the effect of enucleation on these distributions. We also compared these labelings to those of calcium-binding proteins calbindin D28K, calretinin, parvalbumin, and GABA. In the present study, we investigated whether the GluR1- and GluR4-immunoreactive (IR) neurons are interneurons or projection neurons by injection of the retrograde tracer horseradish peroxidase (HRP) into one of each major ascending and descending pathways of the SC. HRP injections were made into a tecto-reticulospinal pathway (TRS) and dorsal lateral geniculate nucleus (dLGN). Animals were then allowed to recover and to survive for 48 hr before perfusion. Sections containing retrograde-labeled neurons were then treated for GluR-immunoreactivity. HRP injections proved that only a small population of the GluR1-IR cells project into TRS (1.4%) and dLGN (2.6%). However, a large subpopulation of GluR4-IR cells project into TRS (32.7%). The differential compositions of inter/projection neurons, along with our previous studies on the separate distribution of the GluR subunits, its differential co-localization with calcium-binding proteins and GABA, and differential reactions to enucleations, strongly imply the functional variety of the receptor subunits in visual behavior responses.