Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.1.001

Retrograde Tracer Studies of Tecto-Reticulospinal Pathway and Dorsal Lateral Geniculate Nucleus on GluR1- and GluR4-Immunoreactive Neurons in the Hamster Superior Colliculus  

Choi, Jae-Sik (Department of Biology, College of Natural Sciences, Kyungpook National University)
Lee, Jea-Young (Department of Biology, College of Natural Sciences, Kyungpook National University)
Jang, Yu-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
Lee, Eun-Shil (Department of Biology, College of Natural Sciences, Kyungpook National University)
Jeon, Chang-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.20, no.1, 2010 , pp. 1-8 More about this Journal
Abstract
We recently reported the distributions of AMPA ($\alpha$-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptor subtypes glutamate receptors (GluR) 1 and GluR4 in the superior colliculi (SC) of hamsters with antibody immunocytochemistry and the effect of enucleation on these distributions. We also compared these labelings to those of calcium-binding proteins calbindin D28K, calretinin, parvalbumin, and GABA. In the present study, we investigated whether the GluR1- and GluR4-immunoreactive (IR) neurons are interneurons or projection neurons by injection of the retrograde tracer horseradish peroxidase (HRP) into one of each major ascending and descending pathways of the SC. HRP injections were made into a tecto-reticulospinal pathway (TRS) and dorsal lateral geniculate nucleus (dLGN). Animals were then allowed to recover and to survive for 48 hr before perfusion. Sections containing retrograde-labeled neurons were then treated for GluR-immunoreactivity. HRP injections proved that only a small population of the GluR1-IR cells project into TRS (1.4%) and dLGN (2.6%). However, a large subpopulation of GluR4-IR cells project into TRS (32.7%). The differential compositions of inter/projection neurons, along with our previous studies on the separate distribution of the GluR subunits, its differential co-localization with calcium-binding proteins and GABA, and differential reactions to enucleations, strongly imply the functional variety of the receptor subunits in visual behavior responses.
Keywords
AMPA glutamate receptors; retrograde tracer; localization; tecto-reticulospinal pathway; dorsal lateral geniculate nucleus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Leranth, C., Z. Szeidemann, M. Hsu, and G. Buzsaki. 1996. AMPA receptors in the rat and primate hippocampus: a possible absence of GluR2/3 subunits in most interneurons.Neuroscience 70, 631-652.   DOI
2 McDonald, A. J. 1996. Localization of AMPA glutamate receptor subunits in subpopulations of non-pyramidal neurons in the rat basolateral amygdala. Neurosci. Lett. 208, 175-178.   DOI
3 Michaelis, E. K. 1998. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369-415.   DOI
4 Mize, R. R., C. J. Jeon, G. D. Butler, Q. Luo, and P. C. Emson. 1991. The calcium-binding protein calbindin-D28K reveals subpopulations of projection and interneurons in the cat superior colliculus. J. Comp. Neurol. 307, 417-436.   DOI
5 Morin, L. P. and R. I. Wood. 2001. Stereotaxic Atlas of the Golden Hamster Brain. Academic Press Inc., San Diego.
6 Murray, E. A. and J. D. Coulter. 1982. Organization of tectospinal neurons in the cat and rat superior colliculus. Brain Res. 243, 201-214.   DOI
7 Nabors, L. B. and R. R. Mize. 1991. An unique neuronal organization in the cat pretectum revealed by antibodies to the calcium-binding protein calbindin-D 28k. J. Neurosci. 11, 2460-2476.
8 Park, W. M., M. J. Kim, and C. J. Jeon. 2004. Ionotropic glutamate receptor GluR2/3-immunoreacitive neurons in the cat, rabbit, and hamster superficial superior colliculus. Neurosci. Res. 49, 139-155.   DOI
9 Sahibzada, N., D. Yamasaki, and R. W. Rhoades. 1987. The spinal and commissural projections from the superior colliculus in rat and hamster arise from distinct neuronal populations. Brain Res. 415, 242-256.   DOI
10 Huerta, M. F. and J. K. Harting. 1984. The mammalian superior colliculus: studies of its morphology and connections. pp. 687-772, In Vangega, H. (ed.), The Comparative Neurology of the Optic Tectum, Plennum Press Inc., New York.
11 Huerta, M. F., A. Frankfurter, and J. K. Harting. 1983. Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J. Comp. Neurol. 220, 147-167.   DOI
12 Sheng, M. and M. J. Kim. 2002. Postsynaptic signaling and plasticity mechanisms. Science 298, 776-780.   DOI
13 Song, I. and R. L. Huganir. 2002. Regulation of AMPA receptors during synaptic plasticity. Treands Neurosci. 25, 578-588.   DOI
14 Sparks, D. L. 1999. Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr. Opin.Neurobiol. 9, 698-707.   DOI
15 Isa, T. and S. Sasaki. 2002. Brainstem control of head movements during orienting; organization of the premotor circuit. Prog. Neurobiol. 66, 205-241.   DOI
16 Hume, R. I., R. Dingledine, and S. F. Heinemann. 1991. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028-1031.   DOI
17 Illing, R. B. 1996. The mosaic architecture of the superior colliculus. Prog. Brain Res. 112, 17-34.   DOI
18 Isa, T. 2002. Intrinsic processing in the mammalian superior colliculus. Curr. Opin. Neurobiol. 12, 668-677.   DOI
19 Jeon, C. J. and R. R. Mize. 1993. Choline acetyltransferase- immunoreacitive patches overlap specific efferent cell groups in the cat superior colliculus. J. Comp. Neurol. 1, 127-150.
20 Jonas, P., C. Racca, B. Sakmann, P. H. Seeburg, and H. Monyer. 1994. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281-1289.   DOI
21 Kawamura, S., N. Fukushima, S. Hattori, and M. Kudo. 1980. Laminar segregation of cells of origin of ascending projections from the superficial layers of the superior colliculus in the cat. Brain Res. 184, 486-490.   DOI
22 Kerr, R. C., D. J. Maxwell, and A. J. Todd. 1998. GluR1 and GluR2/3 subunits of the AMPA-type glutamate receptor are associated with particular types of neuron in laminae I-III of the spinal dorsal horn of the rat. Eur. J. Neurosci. 10, 324-333.   DOI
23 Kharazia, V. N., R. J. Wenthold, and R. J. Weinberg. 1996. GluR1-immunopositive interneurons in rat neocortex. J.Comp. Neurol. 368, 399-412.   DOI
24 Kondo, M., R. Sumino, and H. Okado. 1997. Combinations of AMPA receptor subunit expression in individual cortical neurons correlate with expression of specific calcium-binding proteins. J. Neurosci. 17, 1570-1581.
25 Lane, R. D., D. M. Allan, C. A. Bennett-Clarke, D. L. Howell, and R. W. Rhoades. 1997. Projection status of calbindin- and parvalbumin-immunoreactive neurons in the superficial layers of the rat's superior colliculus. Vis. Neurosci. 14, 277-286.   DOI
26 Celio, M. R. 1990. Calbindin d-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375-475.   DOI
27 Choi, J. S., J. Y. Lee, and C. J. Jeon. 2009. Glutamate receptor GluR1 and GluR4 in the hamster superior colliculus: distribution and co-localization with calcium-binding protein and GABA. Acta Histochem. Cytochem. 42, 29-38.   DOI
28 Weber, J. T., G. F. Martin, M. Behan, M. F. Huerta, and J. K. Harting. 1979. The precise origin of the tectospinal pathway in three common laboratory animals: a study using the horseradish peroxidase method. Neurosci. Lett. 11, 121-127.   DOI
29 Whitlock, J. R., A. J. Heynen, M. G. Shuler, and M. F. Bear. 2006. Learning induces long-term potentiation in the hippocampus. Science 313, 1093-1097.   DOI
30 Kwok, K. H., Y. C. Tse, R. N. Wong, and K. K. Yung. 1997. Cellular localization of GluR1, GluR2/3 and GluR4 glutamate receptor subunits in neurons of the rat neostriatum. Brain Res. 778, 43-55.   DOI
31 Graybiel, A. M. 1978. Organization of the nigrotectal connection: An experimental tracer study in the cat. Brain Res. 143, 339-348.   DOI
32 Graham, J. and V. A. Casagrande. 1980. A light microscopic and electron microscopic study of the superficial layers of the superior colliculus of the tree shrew (Tupaia glis). J.Comp. Neurol. 191, 133-151.   DOI
33 Grantyn, A. A. and A. K. Moschovakis. 2004. Structurefunction relationships in the superior colliculus of higher mammals. pp. 107-145, In Hall, W. C. and A. Moschovakis (eds.), The Superior Colliculus, CRC Press Inc., Boca Raton.
34 Grantyn, R. 1988. Gaze control through superior colliculus: structure and function. Rev. Oculomot. Res. 2, 273-333.
35 Graybiel, A. M. 1978. A stereometric pattern of distribution of acetylcholine-esterase in the deep layers of the superior colliculus. Nature 272, 539-541
36 Gutierrez-Igarza, K., D. J. Fogarty, F. Perez-Cerda, F. Donate-Oliver, K. Albus, and C. Matute. 1996. Localization of AMPA-selective glutamate receptor subunits in the adult cat visual cortex. Vis. Neurosci. 13, 61-72.   DOI
37 Hall, W. C., D. Fitzpatrick, L. L. Klatt, and D. Raczkowski. 1989. Cholinergic innervation of the superior colliculus in the cat. J. Comp. Neurol. 287, 495-514.   DOI
38 Harrell, J. V., R. B. Caldwell, and R. R. Mize. 1982. The superior colliculus neurons which project to the dorsal and ventral lateral geniculate nuclei in the cat. Exp. Brain Res. 46, 234-242.   DOI
39 Harting, J. K. 2004. Puffs and patches: a brief chronological review. pp. 83-105, In Hall, W. C. and A. Moschovakis (eds.), The Superior Colliculus, CRC Press Inc., Boca Raton.
40 Harting, J. K., B. V. Updyke, and D. P. Van Lieshout. 1992. Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas. J. Comp. Neurol. 324, 379-414.   DOI
41 Hollmann, M. and S. Heinemann. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108.   DOI