소아에서 췌장의 악성 종양은 매우 드물게 발생하고 있으며, 특히 악성 신경내분비 종양은 더더욱 드물다. 저자들은 16세 소아 환자에서 발생한 비기능성 악성 신경내분비 종양의 증례를 경험하여 CT와 MRI 소견을 보고하고자 한다. 췌장 두부에서 발생한 고형 종양으로 조영증강 MRI의 문맥기에서 지연기로 갈수록 조영증강이 잘 되고, 주변의 혈관 침습, 총담관 폐색, 림프절병증 등 악성 소견을 동반할 때 췌장의 비기능성 악성 신경내분비 종양을 감별 진단에 포함하여야 한다.
본 연구에서는 증기유량, 중기온도 주 급수 온도 및 유량둥과 같은 외란에 의해 증기발생기의 웅축 및 팽창효 과가 발생하여 수위조절에 어려웅이 발생하는 문제를 신경망-PI제어기를 이용해 효과적으로 제어하는 연구를 하였다. 종래의 PI제어기는 저 출력에서 효과적으로 제어 할 수 없어 기동시는 숙련자의 노련한 기술이 필요한데 반해 본 연구에서 적용한 신경망 PI제어기는 Kp,Ti 파라매터를 외란에 영향을 줄 수 있는 파라메터를 고려하여 신경망을 이용해 튜닝함으로서 웅축 및 팽창효과를 줄이고 외란 및 설정치 변경에 대해 효과적으로 제어 될 수 있음을 실험과 시뮬레이션을 통해 확인 할 수 있었다.
전 지구적으로 발생하고 있는 기후변화로 인한 기상이변으로 자연재해 발생빈도 및 피해규모는 증가하고 있는 추세로 나타나고 있다. 이에 따라 많은 연구는 자연재해에 직간접적으로 영향을 미치고 있는 홍수와 가뭄의 변화에 초점이 맞추어져 있는 것이 사실이다. 하지만, 최근에 우리나라의 경우 지난 2011년 2월에는 동해안의 폭설로 인하여 동해안지방 최심신적설량 극값 1위를 경신하였고, 2010년 1월 서울에는 40년만에 최대 적설량을 기록하는 등 최근 한반도에서 발생한 적설로 인하여 사회적 경제적 피해가 증가하고 있다. 따라서, 지구온난화에 기인한 기후변화 연구에서 상대적으로 소홀했던 적설량과 관련한 연구의 중요성도 대두되고 있다. 본 연구에서는 적설량에 온도 및 강수가 미치는 영향을 평가하기 위하여 관측기상자료를 이용하였다. 적설량은 기상인자들의 복잡한 비선형 조합으로 발생하기 때문에 적설량에 영향을 미치는 온도, 강수, 적설량의 비선형 과정들을 고려할 수 있는 신경망 모형을 이용하여 적설량 예측 모형을 구성하였다. 30년 이상의 관측자료를 보유하고 있는 기상청 산하 58개 관측지점의 자료를 이용하여 2002년 이전에 관측된 온도, 강수, 적설량을 지점별로 훈련시켰으며 이를 적설량 예측에 활용하고자 하였다. 이를 위해 구성된 신경망 모형에 2002년 이후 지점별 온도, 강우자료를 이용하여 적설량을 산정하고 통계분석을 실시한 결과 적설량 예측에 적용이 가능함을 확인하였다.
본 연구에서는 심층 신경망을 이용하여 Cochlodinium polykrikoides 적조 발생을 예측하는 모델을 제안한다. 적조 발생 예측을 위해 8개의 은닉층을 가진 심층 신경망을 구축하였다. 위성 재분석 자료와 기상수치모델 자료를 이용하여 과거 적조 발생해역의 해양 및 기상인자 총 59개를 추출하여 신경망 모델 학습에 활용하였다. 전체 데이터셋 중 적조 발생 사례는 적조 미발생 사례에 비해 매우 적어 불균형 데이터 문제가 발생하였다. 본 연구에서는 이를 해결하기 위해 과표집화(Over sampling) 기반 데이터 증식(Data augmentation) 기법을 적용하였다. 과거자료를 활용하여 모형의 정확도를 평가한 결과 약 97%의 정확도를 보였다.
본 논문은 인공생명 기법을 이용하여 생물의 정보처리 시스템을 구현하고자 하는 것이다. 자연계의 생물은 그 자체로 훌륭한 정보처리 시스템이다. 생물체는 하나의 생식 세포로부터 발생된다. 또한 이 개체의 종은 진화의 과정을 통해 환경에 적응한다. 본 논문에서는 이와 같은 생물학적인 발생과 진화의 개념을 이용하여 신경망을 설계하는 방법을 제안한다. 생물체의 개체발생은 발생모델의 하나인 셀룰라 오토마다(CA)를 통하여 구현하였고 진화과정은 진화 알고리즘(EAs)을 사용하였다. 우리는 이와 같이 구현한 '진화하는 셀룰라 오토마타 신경망'을 줄여서 ECANS1이라 명명하였다. 셀 사이의 연결은 CA 법칙에 의하여 결정되며, 셀의 초기 패턴이 진화함으로써 유용한 신경망을 찾아낸다. 신경망의 각 셀 즉 뉴런은 생물의 발화 ${\cdot}$ 비발화의 특성을 갖는 카오스 뉴런 모델을 사용하였다. 그리고 신경마의 최종 출력값은 뉴런의 발화 빈도로서 나타내었다. 제안한 방법은 Exclusive-OR 문제 및 패리티 문제에 적용함으로써 그 유효성을 검증하였다.
본 실험은 삼차신경 자극으로 발생되는 체성 감각 유발 전위에 대한 국소마취제의 효과를 관찰하였다. 나트륨 통로차단을 통하여 약리작용을 나타내는 것으로 알려져 있는 리도카인를 뇌 피질에 국소 투여한 후 삼차신경의 체성 감각유발 전위의 강도및 지연시간을 측정하였다. 케타민으로 마취된 흰쥐의 대측성 구레나룻 자극후 뇌의 체성 감각영역으로부터 기록되는 유발전위를 분석한 결과, 리도카인을 뇌 피질에 국소 투여시 유발전위의 강도 및 지연시간의 감소가 나타났으며, 필드 전위의 형태는 이상성 (양극성 및 음극성) 혹은 삼상성 (양극성, 음극성 및 양극성) 의 파형으로 나타났다. 필드 전위의 발생 부위는 뇌 피질의 중대뇌동맥의 상행지 상방영역이었다. 본 실험에서 나타난 초기 전위변동은 피질판 상층에 존재하는 신경세포의 탈분극 과청에 의하여 생성되고 후기의 전위 변동은 동일 영역의 하층 신경세포에서 과분극 혹은 재분극이 발생한 결과라고 유추된다. 따라서 삼차신경계의 체성 감각 영역에서는 피질 상층및 하층의 과립성 피라미드 세포의 순차적인 활성화에 의하여 기본적인 신경 회로망이 형성되어 있으며 생리적 자극으로 유발되는 필드 전위는 이러한 신경망를 통하여 발생될 것으로 사료된다.
이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.
장골근 파열은 매우 드물게 발생하는 손상으로 고에너지 외상이나 혈액 응고 기능 장애, 항혈액응고제 사용자, 혈우병 환자 등 출혈경향이 있는 환자에서 저에너지 손상을 받는 경우에 발생할 수 있다. 장골근의 파열로 인한 혈종의 압박에 의해 발생한 대퇴 신경 마비가 국내에도 드물게 보고된 바가 있다. 자기공명영상 검사로 병변 부위를 확진하고 신경전도 검사 및 근전도 검사로 대퇴신경 마비의 범위를 평가할 수 있고 혈액응고 기능에 문제가 있거나 출혈경향이 있는 환자를 선별하기 위해 반드시 혈액학적인 검사가 선행되어야 한다. 저자들은 정상적인 32세 남자가 축구 경기 도중 공을 차는 동작에서 발생한 장골근 파열 및 혈종의 압박으로 인한 부분적인 대퇴신경 마비의 증례를 경험하고 6개월간 추시 관찰하였으며, 양호한 결과를 얻었기에 문헌고찰과 함께 보고하는 바이다.
본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.