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1. Introduction

For the primary somatosensory cortex in
various species of mammals, there is a precise
somatosensory map of the body and face, inc-
luding oral structures such as the tooth.® It
is well known that primary somatosensory co-
rtex is characterized by an organization of la-
ver IV cells into distinct cytoarchitectonic
units. These units were termed ’barrels’ be-
cause of their shape in Nissl preparations. Ba-
rrels are arranged in direct topographical re-
lation to the vibrissa on the animals snout,
each barrel! being structurally and functionally
associated with a corresponding contralateral
vibrissa. A major part of the barrel field consi-
sts of five prominent rows of five to seven
large barrels. It was suggested that the poten-
tials evoked by vibrissa stimulation were due
to laminar interaction between two distinct
populations of pyramidal neurons, one in the
supragranular layers and another in the infra-
granular layers. The reports by Amstrong-Ja-
mes et al” suggest that stimulation of a single
vibrissa results not only in activation of asso-
ciated layer IV barrel, but also in local activa-
tion of cells in the supragranular and infragra-
nular layers of the same cortical region. These
results indicate that neurons in vibrissa/barrel
cortex are functionally organized into vertical
columns of which the barrels in layer IV are
morphologically recognizable correlates.®

It is also indicated that the laminar arrange-
ment of cells within each column reflect yet
another functional and cytoarchitectural order,
although rat vibrissal cortex is topographically
arranged in discrete barrel-related columns.
A number of studies”™*"* have provided evi-
dence that the smallest receptive fields are
found in the middle granular layers (IV and
deep IID) in vibrissa/barrel cortex. Receptive
fields in cells of the supragranular layers are
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twice as large as the granular cells, and even
larger in infragranular layers. Furthermore,
study of response latency'” has also demonst-
rated shorter latencies in layer IV, with longer
delays in layers II-1I and V. These data sug-
gest that information may be processed within
each barrel-related column in a spatially and
temporally organized sequence along the la-
minar axis. Based on evidence from single-
unit recordings, Simons® has proposed that
processing within columns originates in layer
IV and lower-layer I, proceeds to the super-
ficial cortical lamina and finally to the deep
lamina. Similar lamina-dependent processing
has been extensively documented in somato-
sensory cortex of monkey™, cat® and rat®,
and visual cortex of monkey® and cat®.

The sequential laminar interactions measu-
red in single-unit studies of rat vibrissa/barrel
cortex are similar to those derived from ext-
racellularly recorded postsynaptic field poten-
tials during evoked responses to epicortical
electrical stimulation and during evoked and
spontaneous epileptic spikes of the penicillin
fO CUSS' 7.16,17. 18,41, 42, 43, 44) .

In this study, the effect of topical application
of lidocaine, a sodium channel blocker, into
the cortex on the amplitude and latency of
cortical somatosensory evoked potentials were
measured. The objective of the present expe-
riment was to extend our method of field po-
tential analysis to the study of evoked respon-
ses In vibrissa/barrel cortex and to compare
patterns of electrical activities produced by
normal physiological stimulation with those
by lidocaine stimulation.

II. Material and Method

1. Animal surgery

Adult Sprague-Dawley rats (300-350g)
were used and anesthesia was done with a



combination of ketamine HCI(60mg/kg) and
xylazine (13mg/kg). A unilateral craniotomy
was performed to expose a parietotemporal
cortex. The dura was removed and the expo-
sed cortex was covered with saline throughout
the experiment.

2, Stimulation of vibrissa

Large mystacial vibrissa (mostly C2) were
selected for stimulation because of their well-
known large corresponding barrel representa-
tion in the cortex. The vibrissa were cut to
a length of 12 mm and attached to the tip
of a orthodontic wire. The probe was driven
by a laboratory-built stimulator that used a
small audio speaker into vertical mechanical
movements up to several millimeters. In the
present study, brief (50 ms) monophasic pul-
ses were used to produce vibrissa displaceme-
nts of ~0.5mm excursion in the dorsoventral
direction. This stimulation setting produced
highly repeatable evoked cortical responses
in preliminary experiments.

3. Field potential recording

The evoked potentials were recorded from
a Ag electrode. The electrode was advanced
by 50um and inserted perpendicular to the
cortical surface. Evoked potential session was
carried out before and immediately after drug
administration. Electrical signals were pream-
plified with AI 405 probe (Axon Co.) and tra-
nsferred to Cyberamp 380 (Axon Co.). The
connector of the recording cable was plugged
into the AD converter and electrophysiological
data acquisition was started. The raw evoked
potentials were continuously displayed on the
screen of the computer. The electrophysiolo-
gical data were stored on a hard disk. With
the use of ascending branches of the middl
e cerebral artery as an approximate landmark
30 the projection region of a given vibrissa
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in the somatosensory cortex was localized in
the optimal responses (shortest latency and
highest amplitude potential) recorded from
a surface electrode. Evoked field potentials
were digitally sampled (400 Hz ; 2.5 ms) and
both single trial data and averaged responses
(n=20) stored on disk for further analysis.
HI. Results

Lidocaine was injected through a 50um mi-
cro syringe (Hamilton CO. Reno. Nev.) fixed
in a animal holding apparatus into the ipsilate-
ral area (Fig. 1). Topical application of lido-
caine was made by advancing the plunger ma-
nually. Field potentials were recorded every
2 or 10 min with silver electrode. Fig.2 shows
an test paradigm used to evaluated evoked
potentials. EEG activity and response to sound
was recorded to rule out the possibility of the
engagement of sound stimuli to the evoked
potentials. After confirming these things, phy-
siological saline and adequate lidocaine were
applied to the brain surface. Averaged evoked
potentials elicited at surface in SI area by vib-
rissa stimulation had one large positive and
one negative component or triphasic (positive-
negative-positive) (Fig.3 ). These components
were reduced within 2 min after a lidocaine
application into somatosensory area (Sml).
The amplitude of the positive component sho-
wed the largest change in amplitude among
these components. Following the high dose
(10 mg/kg) of lidocaine application, a compo-
nent of the somatosensory evoked potential
was partially abolished at 5 min and the evo-
ked potential returned to just below the cont-
rol level within 15 min (Fig. 4A). Application
of low dose (0.5 mg/kg) of lidocaine had no
effect on somatosensory evoked potential
(Fig. 4B). The inhibitory effect of lidocaine
(11.1 mg/kg) on field potentials reached a
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Fig. 1. Schematic diagram of experimental apparatus used in this study (A) and recording
points on the surface of the rat cerebral cortex(B). Black points in window of (B)
indicate recording sites. a, recording electrode; b, reference electrode.
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Fig. 2. Protocols and test paradigm used to evaluate evoked potentials. The stimulus para-
digm (top) indicates the sequence of events for both sound and vibrissa stimulation.
An arrow indicates onset of stimulation.
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Fig. 3. Representative figures of evoked potentials induced by stimulation of vibrissa. An
arrow indicates onset of stimulation.
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Fig. 4. Effects of lidocaine injection into somatosensory cortex on field potentials elicited
by vibrissa stimulation. The field potentials, representing an average of 20 stimulus
trials, were recorded before control, at 5 min, and 15 min after lidocaine injection
into cortex. Note that field potentials have recovered by 15 min after injection. An
arrow indicates onset of stimulation.

maximum about 2-5 min after completion of all experiments, Sml field potentials were col-
the injection and had disappeared by 20-30 lected in the temporal area of the gyrus which
min (Fig. 5). The time course was similar receives projections from vibrissa.

to that reported by Burton and Robinson. In
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Fig. 5. Time course of the effect of application of lidocaine into the cortex on the amplitude
(A) and latency (B) of cortical somatosensory evoked potentials

IV, Discussion

The sequence of electrophysiological events
in the vibrissa barrel cortex evoked by vibrissa
stimulation was due to laminar interaction be-
tween two dictinct populations of pyramidal
neurons, one in the supragranular layers and
another in the infragranular layers. The supra-
and infragranular cell populations are a small
pyramidal cell with short apical dendrites in
layers I-III, and a larger pyramidal cell with
its soma in layers V-VI and longer apical den-
drites extending to the cortical surface, respe-
ctively. (

It can be proposed that there are methodo-
logical limitation in our paper. In general, ane-
sthetics render the somatosensory receptive
field smaller and the responses are stable than
in the awake preparation. The present data
with anesthetized animals therefore do not
reflect cortical function fully. The extracellular
field potentials were recorded by electrodes
with relatively large contacting areas compa-
red with electrodes used in single unit activi-
ties. The resulting potentials therefore reflect
the sum of potentials in that region, including
neurons differing in location and laminar ex-
tent. These summed potentials are probably
dominated by the activity of pyramidal neu-

rons because of their size, numnber, concentra-
tion and morphemetry. But these limitations
of our methodology made it simple to conclude
the results in the present paper.

There are many papers about morphological
and anatomical connection in cortical pyrami-
dal cells. White® has reported that at layers
V-V border in mouse Sml cortex, there are
bipolar cells that receive direct input from
thalamocortical fibers. These bipolar cells
have two thick primary dendrites, on directed
toward cortical surface and the other toward
the white matter, parallel with the processes
of cortical pyramidal neurons. Peters and Ki-
merer" have suggested that the primary role
of these cells in the cerebral cortex is to excite
clusters of pyramidal cells. With major dendri-
tes projection above and below the cell body,
synaptic activation on dendrites proximal to
the soma of bipolar cells would be expected
to result in symmetrical return currents. The-
refore, the evoked potentials activated by phy-
siological stimulation may reflect activity of
a separate subpopulation of bipolar cells in
deeper layers that covaried over time with
the supragranular cells. But the results in the
present paper can not distinguish between
these possibility. We can assume that there
are different mechanism and varying cellular
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activation according to time course of the evo-
ked potentials. Our data about normal curve
of evoked potentials show initial positive res-
ponse and late negative response. Intracellular
recordings demonstrate that vibrissa displace-
ments evoke initial excitatory postsynaptic po-
tentials (EPSPs)"** with shorter latency in
layer IV'. It has also been reported in various
species that evoked responses in the somato-
sensory as well as visual and auditory cortex
are initiated by excitatory processes™* that
are thought to be mediated by fast-conducting
thalamocortical afferents, eliciting postsynap-
tic excitatory responses directly or indirectly
at the deeper parts of small pyramidal neurons
in the upper cortical lamina®™®**, Extracellu-
lar studies in other species provide further
indirect evidence that neuron discharges in
the Sml cortex evoked by cutaneous stimula-

230 and reflect a

tion last as long as 30 ms
predominant excitation during this period.
There may be two possible pathways media-
ting the depolarization of the infragranular py-
ramidal neurons. Similar to the supragranular
neurons, thalamocortical afferents make exte-
nsive excitatory monosynaptic connections
with apical dendrites of infragranular cells®*
%50 producing short-latency activation.

A number of studies in rat as well as cat
have shown that vibrissa stimulation evokes
from Sml cortical neurons longer latency IP-
SPs of 30- to 200-ms duration after short ini-
tial EPSPs, and a cessation of spike discharges
extends through this period™™®, indication
inhibitory nature of these events. Conners et
at™ reported that the pyramidal cells in the
rat Sml cortex generate a long-lasting IPSP,
which follows the short-latency IPSP, begin-
ning at -50-ms poststimulus. This long lasting
IPSP could be evoked from dendritic sites of
pyramidal cells. In studies of excitatory inhibi-

tory response sequences in Sml cortex, Ste-
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riade™ identified a long-lasting period of hy-
perpolarization of 100- to 200-ms latency. On
the basis of intracellular recording, it was con-
cluded that this late inhibitory process is due
to a Ca**-dependent increase in K* conducta-
nce. The present data that topical application
of lidocaine decreased the amplitude but not
changed morphology of potentials support a
basic model of sequential information-proces-
sing in laminar neocortical circuitry that has
been proposed by several authors®?®:%3%
During the vibrissa-evoked response, specific
thalamocortical fibers directly input to cortical
layer IV and lower-layer III, producing short-
latency postsynaptic excitation of the proximal
dendritic regions of short pyramidal cells mo-
nosynaptically and bisynaptically via interneu-
rons. The primary site of depolarization quic-
kly shifts to distal apical dendrites of the inf-
ragranular cells, possibly through direct thala-
mocortical connections as well as through ex-
citatory spiny stellate cells and collateral fi-
bers from the supragranular pyramids. This
excitatory sequency is followed by hyperpola-
rization and repolarization processes, first at
the distal apical dendrites of the supragranular
cells and then at similar locations on the apical
dendrites of infragranular cells. This simple
laminar circuit must therefore reflect funda-
mental cytoarchitectural features of columnar
neocortex. Another analysis method may be
needed to study spatially and temporally ove-
rlapping interactions between supragranular
and infragranular cells during physiological
activation of vibrissa/barrel cortex, providing
complementary information to that obtained
from unit recording.
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