• Title/Summary/Keyword: 신경망 클러스터링

Search Result 85, Processing Time 0.022 seconds

A Benchmark of AI Application based on Open Source for Data Mining Environmental Variables in Smart Farm (스마트 시설환경 환경변수 분석을 위한 Open source 기반 인공지능 활용법 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.159-159
    • /
    • 2017
  • 스마트 시설환경은 대표적으로 원예, 축산 분야 등 여러 형태의 농업현장에 정보 통신 및 데이터 분석 기술을 도입하고 있는 시설화된 생산 환경이라 할 수 있다. 근래에 하드웨어적으로 급증한 스마트 시설환경에서 생산되는 방대한 생육/환경 데이터를 올바르고 적합하게 사용하기 위해서는 일반 산업 현장과는 차별화 된 분석기법이 요구된다고 할 수 있다. 소프트웨어 공학 분야에서 연구된 빅데이터 처리 기술을 기계적으로 농업 분야의 빅데이터에 적용하기에는 한계가 있을 수 있다. 시설환경 내/외부의 다양한 환경 변수는 시계열 데이터의 난해성, 비가역성, 불특정성, 비정형 패턴 등에 기인하여 예측 모델 연구가 매우 난해한 대상이기 때문이라 할 수 있다. 본 연구에서는 근래에 관심이 급증하고 있는 인공신경망 연구 소프트웨어인 Tensorflow (www.tensorflow.org)와 대표적인 Open source인 OpenNN (www.openn.net)을 스마트 시설환경 환경변수 상호간 상관성 분석에 응용하였다. 해당 소프트웨어 라이브러리의 운영환경을 살펴보면 Tensorflow 는 Linux(Ubuntu 16.04.4), Max OS X(EL capitan 10.11), Windows (x86 compatible)에서 활용가능하고, OpenNN은 별도의 운영환경에 대한 바이너리를 제공하지 않고 소스코드 전체를 제공하므로, 해당 운영환경에서 바이너리 컴파일 후 활용이 가능하다. 소프트웨어 개발 언어의 경우 Tensorflow는 python이 기본 언어이며 python(v2.7 or v3.N) 가상 환경 내에서 개발이 수행이 된다. 주의 깊게 살펴볼 부분은 이러한 개발 환경의 제약으로 인하여 Tensorflow의 주요한 장점 중에 하나인 고속 연산 기능 수행이 일부 운영 환경에 국한이 되어 제공이 된다는 점이다. GPU(Graphics Processing Unit)의 제공하는 하드웨어 가속기능은 Linux 운영체제에서 활용이 가능하다. 가상 개발 환경에 운영되는 한계로 인하여 실시간 정보 처리에는 한계가 따르므로 이에 대한 고려가 필요하다. 한편 근래(2017.03)에 공개된 Tensorflow API r1.0의 경우 python, C++, Java언어와 함께 Go라는 언어를 새로 지원하여 개발자의 활용 범위를 매우 높였다. OpenNN의 경우 C++ 언어를 기본으로 제공하며 C++ 컴파일러를 지원하는 임의의 개발 환경에서 모두 활용이 가능하다. 특징은 클러스터링 플랫폼과 연동을 통해 하드웨어 가속 기능의 부재를 일부 극복했다는 점이다. 상기 두 가지 패키지를 이용하여 2016년 2월부터 5월 까지 충북 음성군 소재 딸기 온실 내부에서 취득한 온도, 습도, 조도, CO2에 대하여 Large-scale linear model을 실험적(시간단위, 일단위, 주단위 분할)으로 적용하고, 인접한 세그먼트의 환경변수 예측 모델링을 수행하였다. 동일한 조건의 학습을 수행함에 있어, Tensorflow가 개발 소요 시간과 학습 실행 속도 측면에서 매우 우세하였다. OpenNN을 이용하여 대등한 성능을 보이기 위해선 병렬 클러스터링 기술을 활용해야 할 것이다. 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련을 위한 연구가 필요하다.

  • PDF

PDA Personalized Agent System (PDA용 개인화 에이전트 시스템)

  • 표석진;박영택
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.345-352
    • /
    • 2002
  • 무선 인터넷을 이용하는 사용자는 정보의 양의 따른 시간적 통신비용의 증가 문제로 개인화 에이전트가 사용자의 관심에 따라 서비스를 제공하는 기능과 맞춤화된 정보를 제공하는 기능, 지식 기반 방식으로 정보를 예측하는 기능을 가지기를 바라고 있다. 본 논문에서는 이와 같이 무선 인터넷을 사용하는 사용자를 위한 PDA 개인화 에이전트 시스템을 구축하고자 한다. PDA 개인화 에이전트 시스템 구축을 위해 프로파일 기반의 에이전트 엔진과 사용자 프로파일을 이용한 지식기반 방식을 사용한다. 사용자가 웹페이지에서 행하는 행위들을 모니터링하여 사용자가 관심 가지는 문서를 파악하고 정보 검색을 통해 얻어진 문서를 분석하여 사용자 각각의 관심 문서로 나누어 서비스하게 된다. 모니터링 되어진 문서를 효과적으로 분석하기 위해 unsupervised clustering 기계학습 방식인 Cobweb을 이용한다. unsupervised 기계 학습은 conceptual 방식을 이용하여 검색되어진 정보를 사용자의 관심 분야별로 clustering한다. 클러스터링을 통해 얻어진 결과를 다시 기계학습을 통해 사용자 관심문서에 대한 프로파일을 생성하게 된다. 이렇게 만들어진 프로파일을 룰(Rule)로 만들어 이를 기반으로 사용자에게 서비스하게 된다. 이러한 룰은 사용자의 모니터링 결과로 얻어지기 때문에 주기적으로 업데이트하게 된다. 제안하는 시스템은 인터넷신문이나 웹진 등에서 사용자들에게 뉴스를 전달하기 위한 목적으로 생성하는 뉴스문서를 특정 대상으로 선정하였고 사용자 정보를 이용한 검색을 실시하고 결과로 얻어진 정보를 정보 분류를 통해 PDA나 휴대폰을 통해 사용자에게 제공한다. 상품을 검색하기 위한 검색노력을 줄이고, 검색된 대안들로부터 구매자와 시스템이 웹상에서 서로 상호작용(interactivity) 하여 해를 찾고, 제약조건과 규칙들에 의해 적합한 해를 찾아가는 방법을 제시한다. 본 논문은 구성기반 예로서 컴퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of compu

  • PDF

Reconstruction of 3D Building Model from Satellite Imagery Based on the Grouping of 3D Line Segments Using Centroid Neural Network (중심신경망을 이용한 3차원 선소의 군집화에 의한 위성영상의 3차원 건물모델 재구성)

  • Woo, Dong-Min;Park, Dong-Chul;Ho, Hai-Nguyen;Kim, Tae-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.121-130
    • /
    • 2011
  • This paper highlights the reconstruction of the rectilinear type of 3D rooftop model from satellite image data using centroid neural network. The main idea of the proposed 3D reconstruction method is based on the grouping of 3D line segments. 3D lines are extracted by 2D lines and DEM (Digital Elevation Map) data evaluated from a pair of stereo images. Our grouping process consists of two steps. We carry out the first grouping process to group fragmented or duplicated 3D lines into the principal 3D lines, which can be used to construct the rooftop model, and construct the groups of lines that are parallel each other in the second step. From the grouping result, 3D rooftop models are reconstructed by the final clustering process. High-resolution IKONOS images are utilized for the experiments. The experimental result's indicate that the reconstructed building models almost reflect the actual position and shape of buildings in a precise manner, and that the proposed approach can be efficiently applied to building reconstruction problem from high-resolution satellite images of an urban area.

A Study on Information Expansion of Neighboring Clusters for Creating Enhanced Indoor Movement Paths (향상된 실내 이동 경로 생성을 위한 인접 클러스터의 정보 확장에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.264-266
    • /
    • 2022
  • In order to apply the RNN model to the radio fingerprint-based indoor path generation technology, the data set must be continuous and sequential. However, Wi-Fi radio fingerprint data is not suitable as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, continuity information of sequential positions should be given. For this purpose, clustering is possible through classification of each region based on signal data. At this time, the continuity information between the clusters does not contain information on whether actual movement is possible due to the limitation of radio signals. Therefore, correlation information on whether movement between adjacent clusters is possible is required. In this paper, a deep learning network, a recurrent neural network (RNN) model, is used to predict the path of a moving object, and it reduces errors that may occur when predicting the path of an object by generating continuous location information for path generation in an indoor environment. We propose a method of giving correlation between clustering for generating an improved moving path that can avoid erroneous path prediction that cannot move on the predicted path.

  • PDF

Design of Radial Basis Function Neural Network Driven to TYPE-2 Fuzzy Inference and Its Optimization (TYPE-2 퍼지 추론 구동형 RBF 신경 회로망 설계 및 최적화)

  • Baek, Jin-Yeol;Kim, Woong-Ki;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.247-248
    • /
    • 2008
  • 본 논문에서는 TYPE-2 퍼지 추론 기반의 RBF 뉴럴 네트워크(TYPE-2 Radial Basis Function Neural Network, T2RBFNN)를 설계하고 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 모델의 파라미터를 동정한다. 제안된 모델의 은닉층은 TYPE-2 가우시안 활성 함수로 구성되며, 출력층은 Interval set 형태의 연결가중치를 갖는다. 여기에서 규칙 전반부 활성함수의 중심 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 Interval set 형태의 연결가중치 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 최적의 모델을 설계하기 위한 학습율 및 활성함수의 활성화 영역 결정에는 입자 군집 최적화(PSO; Particle Swarm Optimization) 알고리즘으로 동조한다. 마지막으로, 제안된 모델의 평가를 위하여 모의 데이터 집합(Synthetic dadaset)을 적용하고 근사화 및 일반화 능력에 대하여 토의한다.

  • PDF

Analyzing Influence of Outlier Elimination on Accuracy of Software Effort Estimation (소프트웨어 공수 예측의 정확성에 대한 이상치 제거의 영향 분석)

  • Seo, Yeong-Seok;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.589-599
    • /
    • 2008
  • Accurate software effort estimation has always been a challenge for the software industrial and academic software engineering communities. Many studies have focused on effort estimation methods to improve the estimation accuracy of software effort. Although data quality is one of important factors for accurate effort estimation, most of the work has not considered it. In this paper, we investigate the influence of outlier elimination on the accuracy of software effort estimation through empirical studies applying two outlier elimination methods(Least trimmed square regression and K-means clustering) and three effort estimation methods(Least squares regression, Neural network and Bayesian network) associatively. The empirical studies are performed using two industry data sets(the ISBSG Release 9 and the Bank data set which consists of the project data collected from a bank in Korea) with or without outlier elimination.

Classification of Consonants by SOM and LVQ (SOM과 LVQ에 의한 자음의 분류)

  • Lee, Chai-Bong;Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • In an effort to the practical realization of phonetic typewriter, we concentrate on the classification of consonants in this paper. Since many of consonants do not show periodic behavior in time domain and thus the validity for Fourier analysis of them are not convincing, vector quantization (VQ) via LBG clustering is first performed to check if the feature vectors of MFCC and LPCC are ever meaningful for consonants. Experimental results of VQ showed that it's not easy to draw a clear-cut conclusion as to the validity of Fourier analysis for consonants. For classification purpose, two kinds of neural networks are employed in our study: self organizing map (SOM) and learning vector quantization (LVQ). Results from SOM revealed that some pairs of phonemes are not resolved. Though LVQ is free from this difficulty inherently, the classification accuracy was found to be low. This suggests that, as long as consonant classification by LVQ is concerned, other types of feature vectors than MFCC should be deployed in parallel. However, the combination of MFCC/LVQ was not found to be inferior to the classification of phonemes by language-moded based approach. In all of our work, LPCC worked worse than MFCC.

Fingerprint Classification using Multiple Decision Templates with SVM (SVM의 다중결정템플릿을 이용한 지문분류)

  • Min Jun-Ki;Hong Jin-Hyuk;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1136-1146
    • /
    • 2005
  • Fingerprint classification is useful in an automated fingerprint identification system (AFIS) to reduce the matching time by categorizing fingerprints. Based on Henry system that classifies fingerprints into S classes, various techniques such as neural networks and support vector machines (SVMs) have been widely used to classify fingerprints. Especially, SVMs of high classification performance have been actively investigated. Since the SVM is binary classifier, we propose a novel classifier-combination model, multiple decision templates (MuDTs), to classily fingerprints. The method extracts several clusters of different characteristics from samples of a class and constructs a suitable combination model to overcome the restriction of the single model, which may be subject to the ambiguous images. With the experimental results of the proposed on the FingerCodes extracted from NIST Database4 for the five-class and four-class problems, we have achieved a classification accuracy of $90.4\%\;and\;94.9\%\;with\;1.8\%$ rejection, respectively.

Health Diagnosis System of Pet Dog Using ART2 Algorithm (ART2 알고리즘을 이용한 애견 진단 시스템)

  • Oh, Sei-Woong;Kim, Ji-Hong
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.327-332
    • /
    • 2009
  • In this paper, we propose the diagnosis system that can predict pet's state of health for pet lovers lacking a technical knowledge of dog-diseases. The proposed system deduces diseases of dogs from input symptoms by our database constructed with 105 kinds of diseases and symptoms. First, a disease is clustered by ART2, the self-learning method in neural network and secondly, the result values, outputs and the weight values clustered by the algorithm are stored to database. Finally, our system diagnoses the state of health by means of comparing the learned information of diseases with the input vectors of each symptom and the related results of questions on diseases. The correct information of diseases and symptom diagnosing is important to predict the state of health of dogs. Therefore, in this paper, the proposed system can manage symptoms and diseases efficiently by database and ART2. We ask veterinary specialist with the efficiency of our system. As a result, we could confirm the possibility as the auxiliary diagnosis system for dog diseases.

  • PDF

Semantic Object Detection based on LiDAR Distance-based Clustering Techniques for Lightweight Embedded Processors (경량형 임베디드 프로세서를 위한 라이다 거리 기반 클러스터링 기법을 활용한 의미론적 물체 인식)

  • Jung, Dongkyu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1453-1461
    • /
    • 2022
  • The accuracy of peripheral object recognition algorithms using 3D data sensors such as LiDAR in autonomous vehicles has been increasing through many studies, but this requires high performance hardware and complex structures. This object recognition algorithm acts as a large load on the main processor of an autonomous vehicle that requires performing and managing many processors while driving. To reduce this load and simultaneously exploit the advantages of 3D sensor data, we propose 2D data-based recognition using the ROI generated by extracting physical properties from 3D sensor data. In the environment where the brightness value was reduced by 50% in the basic image, it showed 5.3% higher accuracy and 28.57% lower performance time than the existing 2D-based model. Instead of having a 2.46 percent lower accuracy than the 3D-based model in the base image, it has a 6.25 percent reduction in performance time.