신경망은 선형 시스템뿐만 아니라 비선형 시스템에 있어서도 탁월한 모델링 및 예측 성능을 갖고 있다. 하지만 좋은 성능을 갖는 신경망을 구현하기 위해서는 최적화 해야할 파라미터들이 있다. 은닉층의 뉴런의 수, 학습율, 모멘텀, 학습오차 등이 그것인데 이러한 파라미터들은 경험에 의해서, 또는 문헌들에서 제시하는 값들을 선택하여 사용하는 것이 일반적인 경향이다. 하지만 신경망의 전체적인 성능은 이러한 파라미터들의 값에 의해서 결정되기 때문에 이 값들의 선택은 보다 체계적인 방법을 사용하여 구하여야 한다. 본 논문은 유전 알고리즘을 이용하여 이러한 신경망 파라미터들의 최적 값을 찾는데 목적이 있다. 유전 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 학습오차와 예측오차들을 심플렉스 알고리즘을 이용하여 찾는 파라미터들을 사용하여 학습된 신경망의 오차들과 비교하여 본 결과 유전 알고리즘을 이용하여 찾을 파라미터들을 이용했을 때의 신경망의 성능이 더욱 우수함을 알 수 있다.
태양광 에너지는 탄소 중립 이행을 위한 주요 방안으로 많은 주목을 받고 있다. 태양광 발전량은 여러 환경적 요인에 따라 크게 달라질 수 있으므로, 정확한 발전량 예측은 전력 네트워크의 안정성과 효율적인 에너지 관리에 근본적으로 중요하다. 대표적인 인공지능 기술인 신경망(Neural Network)은 불안정한 환경 변수와 복잡한 상호작용을 효과적으로 학습할 수 있어 태양광 발전량 예측에서 우수한 성능을 도출하였다. 하지만, 신경망은 모델의 구조나 초매개변수(Hyperparameter)를 최적화하는 것은 복잡하고 시간이 많이 드는 작업이므로, 에너지 분야에서 실제 산업 적용에 한계가 존재한다. 본 논문은 2단계 신경망 최적화를 통한 태양광 발전량 예측 기법을 제안한다. 먼저, 태양광 발전량 데이터 셋을 훈련 집합과 평가 집합으로 분할한다. 훈련 집합에서, 각기 다른 은닉층의 개수로 구성된 여러 신경망 모델을 구성하고, 모델별로 Optuna를 적용하여 최적의 초매개변숫값을 선정한다. 다음으로, 은닉층별 최적화된 신경망 모델을 이용해 훈련과 평가 집합에서는 각각 5겹 교차검증을 적용한 발전량 추정값과 예측값을 출력한다. 마지막으로, 스태킹 앙상블 방식을 채택해 기본 초매개변숫값으로 설정해도 우수한 성능을 도출하는 랜덤 포레스트를 이용하여 추정값을 학습하고, 평가 집합의 예측값을 입력으로 받아 최종 태양광 발전량을 예측한다. 인천 지역으로 실험한 결과, 제안한 방식은 모델링이 간편할 뿐만 아니라 여러 신경망 모델보다 우수한 예측 성능을 도출하였으며, 이를 바탕으로 국내 에너지 산업에 이바지할 수 있을 것으로 기대한다.
본 연구는 DEVS 모델링 및 시뮬레이션을 이용한 침입 탐지 기법의 성능평가를 주목적으로 한다. 최근 컴퓨터망의 확대와 컴퓨터 이용의 급격한 증가에 따른 부작용으로 컴퓨터 보안 문제가 중요하게 대두되고 있으며 이러한 추세에 따라 해커들로부터의 침입을 줄이기 위한 침입 탐지 시스템에 관한 연구가 활발히 진행되고 있다. 한편, 침입 탐지 기법으로 전문가 시스템, 신경망, 유전자 알고리즘 등 인공지능 기법을 이용한 다양한 시도가 이루어지고 있으나 이러한 기법들에 대한 성능평가는 대부분 실제 시스템의 구축을 통해서만 다루어 왔다. 따라서, 이를 극복하기 위하여 시뮬레이션 기법의 도입을 통한 성능평가 방법이 요청된다. 따라서, 본 연구에서는 엔진 베이스 모델링을 통하여 일반적인 침입 탐지 시스템을 설계하고 침입 탐지 기법의 하나인 유전자 알고리즘을 적용하여 시뮬레이션 테스트를 수행함으로써 DEVS 모델링 및 시뮬레이션을 이용한 성능평가의 타당성을 검증한다.
본 논문에서는 원격제어 시스템의 시간지연 문제를 분석하고 그 문제를 신경망으로 보상한다. 스미스 예측기는 시간지연 시스템에서 정확한 모델을 필요로 한다. 스미스 예측기의 모델링 오차를 보상하기 위해 신경회로망을 사용한다. 스미스 예측기를 구성하기 위해 Radial Basis Function(RBF) 신경회로망이 사용된다. 시뮬레이션과 실험을 통해 제안하는 방법의 동작을 검증한다.
이 연구는 방사기저함수(RBF) 인공신경망을 이용하여 우리나라 다문화가정 초등학생의 우울증상 경험 예측 모델링을 구축하였다. 전국조사에 참여한 만 9세 이상 12세 이하 다문화 자녀 초등학생 23,291명(남 12,016명, 여 11,275명)을 분석 대상으로 하였다. 결과변수는 이분형의 우울증상 경험으로 정의하였고, 설명변수는 성, 거주지역, 사회적 차별 경험, 지난 1년간 학교폭력 경험, 한국어 교육 경험, 다문화 가족지원센터이용경험, 한국어 읽기, 한국어 말하기, 한국어 쓰기, 한국어 듣기, 한국 사회 적응 교육 경험을 포함하였다. RBF 인공신경망 모델링 결과, 한국어 교육 경험, 학교 폭력 피해 경험, 한국 사회 차별 경험, 한국어 읽기 수준은 다문화 초등학생의 우울증상을 분류하는 주요 예측 요인이었다. 다문화 아동의 우울증을 예방하기 위해서 한국어 읽기 수준이 저하된 집단에 대한 우선적인 관심과 상담이 필요하다.
CNC공작기계의 두 서보축을 대상으로 가공 정밀도를 향상시키기 위한 신경망 윤과제어 알고리즘을 제안한다. 이 연구에서는 두 축 상호간에 미치는 영향을 신경망의 학습 능력을 이용하여 보상하고자 한다. 윤곽제어를 위해서는 매 샘플링 주기마다 윤곽오차를 계산하여하나, 윤곽오차는 직선경로를 이동하는 경우 쉽게 계산가능하나 원호, 인볼루트곡선등 비선형 경로를 가공하는 경우에는 정확하게 계산하기 힘들다. 먼저 이 논문에서는 임의의 비선형 곡선경로에 대하여도 윤곽오차를 정확히 구해낼 수 있는 새로운 윤곽오차 모델링 방법을 제안다. 또한 이러한 윤곽오차에 대한 항을 포함하는 성능지수를 정의하고, 신경망 윤곽제어를 위한 온라인 학습법칙을 유도한다. 이러한 신경망윤곽제어기의 사용으로 시스템이 비선형 특성을 가지거나 외부 환경이 변화하는 경우에도 좋은 윤곽제어 성능을 유지할 수 있다.
Driving safety of a vehicle is largely influenced by the damper and the tire. Developed in this research is a fault diagnosis algorithm for the two components so that the driver can be promptly informed when fault occurs in one or both of them. To this end, the damper and the tire were modeled using the neural network from their experimental data, and fault diagnosis was made using frequency responses of the damping force and the dynamic wheel force. The algorithm was tested via experiments, and it demonstrated successful diagnostic performance under various driving conditions.
소자 수율을 향상시키기 위해서는 웨이퍼 전체에 걸쳐 플라즈마 공정특성이 균일하게 분포되어야 한다. 본 연구에서는 Actinomeric 광 반사분광기 (Otical Emission Spectroscopy) 정보를 이용하여 식각률 비균일도에 대한 모델을 개발하였다. 제안된 기법은 Oxide 식각공정에서 수집한 데이터에 적용하였으며, 체계적인 모델링을 위해 공정데이터는 통계적 실험계획 법을 적용하여 수집되었다. 신경망의 예측성능은 유전자 알고리즘을 이용해서 증진시켰다. OES의 차수를 줄이기 위해 주인자 분석을 세 종류의 분산(100, 99, 98%)에 대해서 적용하였다. 개발된 모델은 발표된 이전의 모델에 비해 17% 증진된 예측성능을 보였다.
본 논문에서는 신경망을 이용한 새로운 비선형 능동소음제어 시스템(ANC; active noise control system) 을 제안하였다. 제안한 시스템에서는 2개의 다층신경망을 사용하여 제어기와 2차 경로의 모델을 구성하였으며, 특히 기존의 비선형 ANC와는 달리 2차 경로의 모델링이 온라인으로 수행되기 때문에 2차경로가 시변 시스템인 경우에도 적용이 가능하다. 제안한 방범을 비선형 시변 시스템에 대해서 모의 실험한 결과 좋은 소음감소 효과를 보여주었다.
플라즈마 응용화학기상법을 이용하여 Silicon Nitride (SiN) 박막을 증착하였다. PECVD 공정은 Box Wilson 실험계획표를 이용하여 수행하였다. SiN박막의 전하밀도를 신경망과 유전자 알고리즘을 이용하여 모델링하였다. 개발된 모델을 이용하여 전하밀도에의 $N_2$와 $NH_3$의 영향을 다양한 온도에서 고찰하였다. $N_2$ (or $NH_3$)의 증가에 따라 전하밀도는 증가하였으며, 이는 전하밀도의 [N-H]에의 강하게 의존하고 있음을 보인다. 전하밀도는 고온에서의 $NH_3$의 증가, 또는 높은 $NH_3$ 유량에서의 온도의 증가에 따라 급격히 증가하였다. 굴절률 모델과 비교할 때, 이 같은 현상이 [N-H]의 증가에 기인하는 것으로 해석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.