• 제목/요약/키워드: 신경망 모델링

검색결과 333건 처리시간 0.023초

유전알고리즘을 이용한 신경망 구조 및 파라미터 최적화 (Neural Network Structure and Parameter Optimization via Genetic Algorithms)

  • 한승수
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.215-222
    • /
    • 2001
  • 신경망은 선형 시스템뿐만 아니라 비선형 시스템에 있어서도 탁월한 모델링 및 예측 성능을 갖고 있다. 하지만 좋은 성능을 갖는 신경망을 구현하기 위해서는 최적화 해야할 파라미터들이 있다. 은닉층의 뉴런의 수, 학습율, 모멘텀, 학습오차 등이 그것인데 이러한 파라미터들은 경험에 의해서, 또는 문헌들에서 제시하는 값들을 선택하여 사용하는 것이 일반적인 경향이다. 하지만 신경망의 전체적인 성능은 이러한 파라미터들의 값에 의해서 결정되기 때문에 이 값들의 선택은 보다 체계적인 방법을 사용하여 구하여야 한다. 본 논문은 유전 알고리즘을 이용하여 이러한 신경망 파라미터들의 최적 값을 찾는데 목적이 있다. 유전 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 학습오차와 예측오차들을 심플렉스 알고리즘을 이용하여 찾는 파라미터들을 사용하여 학습된 신경망의 오차들과 비교하여 본 결과 유전 알고리즘을 이용하여 찾을 파라미터들을 이용했을 때의 신경망의 성능이 더욱 우수함을 알 수 있다.

  • PDF

강건한 태양광 발전량 예측을 위한 2단계 신경망 최적화 (Two-Stage Neural Network Optimization for Robust Solar Photovoltaic Forecasting)

  • 오진영;소다영;문지훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.31-34
    • /
    • 2024
  • 태양광 에너지는 탄소 중립 이행을 위한 주요 방안으로 많은 주목을 받고 있다. 태양광 발전량은 여러 환경적 요인에 따라 크게 달라질 수 있으므로, 정확한 발전량 예측은 전력 네트워크의 안정성과 효율적인 에너지 관리에 근본적으로 중요하다. 대표적인 인공지능 기술인 신경망(Neural Network)은 불안정한 환경 변수와 복잡한 상호작용을 효과적으로 학습할 수 있어 태양광 발전량 예측에서 우수한 성능을 도출하였다. 하지만, 신경망은 모델의 구조나 초매개변수(Hyperparameter)를 최적화하는 것은 복잡하고 시간이 많이 드는 작업이므로, 에너지 분야에서 실제 산업 적용에 한계가 존재한다. 본 논문은 2단계 신경망 최적화를 통한 태양광 발전량 예측 기법을 제안한다. 먼저, 태양광 발전량 데이터 셋을 훈련 집합과 평가 집합으로 분할한다. 훈련 집합에서, 각기 다른 은닉층의 개수로 구성된 여러 신경망 모델을 구성하고, 모델별로 Optuna를 적용하여 최적의 초매개변숫값을 선정한다. 다음으로, 은닉층별 최적화된 신경망 모델을 이용해 훈련과 평가 집합에서는 각각 5겹 교차검증을 적용한 발전량 추정값과 예측값을 출력한다. 마지막으로, 스태킹 앙상블 방식을 채택해 기본 초매개변숫값으로 설정해도 우수한 성능을 도출하는 랜덤 포레스트를 이용하여 추정값을 학습하고, 평가 집합의 예측값을 입력으로 받아 최종 태양광 발전량을 예측한다. 인천 지역으로 실험한 결과, 제안한 방식은 모델링이 간편할 뿐만 아니라 여러 신경망 모델보다 우수한 예측 성능을 도출하였으며, 이를 바탕으로 국내 에너지 산업에 이바지할 수 있을 것으로 기대한다.

  • PDF

DEVS 모델링 및 시뮬레이션을 이용한 침입 탐지 기법의 성능평가 (Performance Evaluation for Intrusion Detection Techniques Using the DEVS Modeling and Simulation)

  • 이장세
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.81-86
    • /
    • 1999
  • 본 연구는 DEVS 모델링 및 시뮬레이션을 이용한 침입 탐지 기법의 성능평가를 주목적으로 한다. 최근 컴퓨터망의 확대와 컴퓨터 이용의 급격한 증가에 따른 부작용으로 컴퓨터 보안 문제가 중요하게 대두되고 있으며 이러한 추세에 따라 해커들로부터의 침입을 줄이기 위한 침입 탐지 시스템에 관한 연구가 활발히 진행되고 있다. 한편, 침입 탐지 기법으로 전문가 시스템, 신경망, 유전자 알고리즘 등 인공지능 기법을 이용한 다양한 시도가 이루어지고 있으나 이러한 기법들에 대한 성능평가는 대부분 실제 시스템의 구축을 통해서만 다루어 왔다. 따라서, 이를 극복하기 위하여 시뮬레이션 기법의 도입을 통한 성능평가 방법이 요청된다. 따라서, 본 연구에서는 엔진 베이스 모델링을 통하여 일반적인 침입 탐지 시스템을 설계하고 침입 탐지 기법의 하나인 유전자 알고리즘을 적용하여 시뮬레이션 테스트를 수행함으로써 DEVS 모델링 및 시뮬레이션을 이용한 성능평가의 타당성을 검증한다.

  • PDF

원격 제어 시스템에서의 신경망을 이용한 시간 지연 보상 제어기 설계 (Design of a Time-delay Compensator Using Neural Network In a Tele-operation System)

  • 최호진;정슬
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.449-455
    • /
    • 2011
  • 본 논문에서는 원격제어 시스템의 시간지연 문제를 분석하고 그 문제를 신경망으로 보상한다. 스미스 예측기는 시간지연 시스템에서 정확한 모델을 필요로 한다. 스미스 예측기의 모델링 오차를 보상하기 위해 신경회로망을 사용한다. 스미스 예측기를 구성하기 위해 Radial Basis Function(RBF) 신경회로망이 사용된다. 시뮬레이션과 실험을 통해 제안하는 방법의 동작을 검증한다.

방사기저함수 인공 신경망을 이용한 다문화가정 초등학생의 우울증상 경험 예측 모델링 (Radial Basis Function Neural Network Modeling of Depression Experience in Elementary School Students of Multi-cultural Families)

  • 변해원
    • 한국융합학회논문지
    • /
    • 제8권11호
    • /
    • pp.293-298
    • /
    • 2017
  • 이 연구는 방사기저함수(RBF) 인공신경망을 이용하여 우리나라 다문화가정 초등학생의 우울증상 경험 예측 모델링을 구축하였다. 전국조사에 참여한 만 9세 이상 12세 이하 다문화 자녀 초등학생 23,291명(남 12,016명, 여 11,275명)을 분석 대상으로 하였다. 결과변수는 이분형의 우울증상 경험으로 정의하였고, 설명변수는 성, 거주지역, 사회적 차별 경험, 지난 1년간 학교폭력 경험, 한국어 교육 경험, 다문화 가족지원센터이용경험, 한국어 읽기, 한국어 말하기, 한국어 쓰기, 한국어 듣기, 한국 사회 적응 교육 경험을 포함하였다. RBF 인공신경망 모델링 결과, 한국어 교육 경험, 학교 폭력 피해 경험, 한국 사회 차별 경험, 한국어 읽기 수준은 다문화 초등학생의 우울증상을 분류하는 주요 예측 요인이었다. 다문화 아동의 우울증을 예방하기 위해서 한국어 읽기 수준이 저하된 집단에 대한 우선적인 관심과 상담이 필요하다.

고정밀 CNC 머신을 위한 신경망 윤과제어 (A Neuro-contouring controller for High-precision CNC Machine Tools)

  • 이현철;주정홍;전기준
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.1-7
    • /
    • 1997
  • CNC공작기계의 두 서보축을 대상으로 가공 정밀도를 향상시키기 위한 신경망 윤과제어 알고리즘을 제안한다. 이 연구에서는 두 축 상호간에 미치는 영향을 신경망의 학습 능력을 이용하여 보상하고자 한다. 윤곽제어를 위해서는 매 샘플링 주기마다 윤곽오차를 계산하여하나, 윤곽오차는 직선경로를 이동하는 경우 쉽게 계산가능하나 원호, 인볼루트곡선등 비선형 경로를 가공하는 경우에는 정확하게 계산하기 힘들다. 먼저 이 논문에서는 임의의 비선형 곡선경로에 대하여도 윤곽오차를 정확히 구해낼 수 있는 새로운 윤곽오차 모델링 방법을 제안다. 또한 이러한 윤곽오차에 대한 항을 포함하는 성능지수를 정의하고, 신경망 윤곽제어를 위한 온라인 학습법칙을 유도한다. 이러한 신경망윤곽제어기의 사용으로 시스템이 비선형 특성을 가지거나 외부 환경이 변화하는 경우에도 좋은 윤곽제어 성능을 유지할 수 있다.

  • PDF

신경망을 이용한 현가시스템의 모델링 및 고장 진단에 관한 연구 (A Study on Modeling and Fault Diagnosis of Suspension Systems Using Neural Network)

  • 이정호;박기홍;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.95-103
    • /
    • 2003
  • Driving safety of a vehicle is largely influenced by the damper and the tire. Developed in this research is a fault diagnosis algorithm for the two components so that the driver can be promptly informed when fault occurs in one or both of them. To this end, the damper and the tire were modeled using the neural network from their experimental data, and fault diagnosis was made using frequency responses of the damping force and the dynamic wheel force. The algorithm was tested via experiments, and it demonstrated successful diagnostic performance under various driving conditions.

OES 정보와 신경망을 이용한 플라즈마 식각들 비균일도의 모델링 (Modeling of Plasma Etch Non-Uniformity by Using OES Information and Neural Network)

  • 권민지;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.403-404
    • /
    • 2007
  • 소자 수율을 향상시키기 위해서는 웨이퍼 전체에 걸쳐 플라즈마 공정특성이 균일하게 분포되어야 한다. 본 연구에서는 Actinomeric 광 반사분광기 (Otical Emission Spectroscopy) 정보를 이용하여 식각률 비균일도에 대한 모델을 개발하였다. 제안된 기법은 Oxide 식각공정에서 수집한 데이터에 적용하였으며, 체계적인 모델링을 위해 공정데이터는 통계적 실험계획 법을 적용하여 수집되었다. 신경망의 예측성능은 유전자 알고리즘을 이용해서 증진시켰다. OES의 차수를 줄이기 위해 주인자 분석을 세 종류의 분산(100, 99, 98%)에 대해서 적용하였다. 개발된 모델은 발표된 이전의 모델에 비해 17% 증진된 예측성능을 보였다.

  • PDF

2차경로의 온라인 모델링이 포함된 비선형 능동소음제어기의 설계 (Nonlinear Active Noise Control with On-Line Secondary Path Modeling)

  • 오원근
    • 한국정보통신학회논문지
    • /
    • 제6권5호
    • /
    • pp.667-675
    • /
    • 2002
  • 본 논문에서는 신경망을 이용한 새로운 비선형 능동소음제어 시스템(ANC; active noise control system) 을 제안하였다. 제안한 시스템에서는 2개의 다층신경망을 사용하여 제어기와 2차 경로의 모델을 구성하였으며, 특히 기존의 비선형 ANC와는 달리 2차 경로의 모델링이 온라인으로 수행되기 때문에 2차경로가 시변 시스템인 경우에도 적용이 가능하다. 제안한 방범을 비선형 시변 시스템에 대해서 모의 실험한 결과 좋은 소음감소 효과를 보여주었다.

신경망을 이용한 실리콘 나이트라이드 박막의 전하밀도 모델링 (Charge Density Modeling of Silion Nitride Thin Films Using Neural Network)

  • 권상희;김병환
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.114-115
    • /
    • 2007
  • 플라즈마 응용화학기상법을 이용하여 Silicon Nitride (SiN) 박막을 증착하였다. PECVD 공정은 Box Wilson 실험계획표를 이용하여 수행하였다. SiN박막의 전하밀도를 신경망과 유전자 알고리즘을 이용하여 모델링하였다. 개발된 모델을 이용하여 전하밀도에의 $N_2$$NH_3$의 영향을 다양한 온도에서 고찰하였다. $N_2$ (or $NH_3$)의 증가에 따라 전하밀도는 증가하였으며, 이는 전하밀도의 [N-H]에의 강하게 의존하고 있음을 보인다. 전하밀도는 고온에서의 $NH_3$의 증가, 또는 높은 $NH_3$ 유량에서의 온도의 증가에 따라 급격히 증가하였다. 굴절률 모델과 비교할 때, 이 같은 현상이 [N-H]의 증가에 기인하는 것으로 해석되었다.

  • PDF