• Title/Summary/Keyword: 신경망 모델링

Search Result 333, Processing Time 0.025 seconds

Modeling of Boiler Steam System in a Thermal Power Plant Based on Generalized Regression Neural Network (GRNN 알고리즘을 이용한 화력발전소 보일러 증기계통의 모델링에 관한 연구)

  • Lee, Soon-Young;Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.349-354
    • /
    • 2022
  • In thermal power plants, boiler models have been used widely in evaluating logic configurations, performing system tuning and applying control theory, etc. Furthermore, proper plant models are needed to design the accurate controllers. Sometimes, mathematical models can not exactly describe a power plant due to time varying, nonlinearity, uncertainties and complexity of the thermal power plants. In this case, a neural network can be a useful method to estimate such systems. In this paper, the models of boiler steam system in a thermal power plant are developed by using a generalized regression neural network(GRNN). The models of the superheater, reheater, attemperator and drum are designed by using GRNN and the models are trained and validate with the real data obtained in 540[MW] power plant. The validation results showed that proposed models agree with actual outputs of the drum boiler well.

Modeling of Secondary Path in an Active Noise Control Using Time Delay Neural Network (시간 지연 신경 회로망을 이용한 능동 소음 제어 시스템의 2차 경로 모델링)

  • 이병도;이민호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.19-24
    • /
    • 1998
  • 이 논문에서는 능동 소음 제어 시스템을 구성하는 요소들인 증폭기와 저주파 필터 와 같은 소자들의 비선형 특성과 공간에서의 주파수 대역에 따른 비선형 특성을 보상하여, 보다 효과적인 능동 소음 제어기를 설계하기 위해 시간 지연 신경 회로망을 이용하는 새로 운 방법을 제안한다. 공간을 포함한 2차 경로 함수를 모델링하여 보다 나은 성능을 갖는 능 동 소음 제어기를 구성하기 위한 기존의 최소 자승 오차 알고리듬에 기반한 filtered-x least mean square(LMS) 알고리듬과 오차 역전달 학습 알고리듬을 갖는 시간 지연 다층 구조 인 식자를 이용한 결과를 간단한 실험을 통하여 그 성능을 비교 분석한다.

  • PDF

Improving Performance of Human Action Recognition on Accelerometer Data (가속도 센서 데이터 기반의 행동 인식 모델 성능 향상 기법)

  • Nam, Jung-Woo;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.523-528
    • /
    • 2020
  • With a widespread of sensor-rich mobile devices, the analysis of human activities becomes more general and simpler than ever before. In this paper, we propose two deep neural networks that efficiently and accurately perform human activity recognition (HAR) using tri-axial accelerometers. In combination with powerful modern deep learning techniques like batch normalization and LSTM networks, our model outperforms baseline approaches and establishes state-of-the-art results on WISDM dataset.

A Comparative Study of Monthly Inflow Prediction Methods by using Stochastic model and Artificial Neural Network model (추계학적 모형과 신경망 모형을 이용한 월유입량 예측기법 비교 연구)

  • Kang, Kwon Su;Heo, Jun Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1208-1212
    • /
    • 2004
  • 다목적댐을 효율적이고 체계적으로 운영하기 위해서는 수문순환에 대한 지역별, 기간별 이해와 더불어 댐저수지로의 정확한 유입량 산정이 필요하다. 수문모델링을 비교하기 위해서는 개념적 모형과 추계학적 모형으로 나눌 수 있는데 개념적 모형은 상당히 많은 입력요소로 말미암아 사용자로 하여금 이해를 하는데 있어서 어려움을 겪을 수 밖에 없는 실정이나 추계학적 모형은 확률적 철상 및 기초적 예측이론을 습득하게 되면 쉽고 간단하여 검토를 용이하게 할 수 있는 장점이 있다. 수자원시스템의 설계, 계획, 운영에 있어서 핵심적인 수문변수의 미래거동의 보다 나은 추정치가 필요하다. 예를 들어, 수력발전, 레크리에이션 이용과 하류지역의 오염희석과 같은 다중 목적을 유지하기 위하여 다목적댐을 운영할 때에, 다가오는 미래시간에 대한 계획된 유입량의 예측이 요구된다. 예측의 목적은 미래에 발생한 정확한 예측을 제공하는 것이다. 따라서 월유입량 예측을 위해 추계학적 모형(ARMA(1,1), ARMAX, TFN, SARIMA)과 신경망 모형(BP, CASCADE 등)의 적용을 통해 한강수게 주요 다목적댐에 가장 적합한 방법을 선정하고자 하는데 본 연구의 목적이 있다.

  • PDF

Perceptual Video Coding using Deep Convolutional Neural Network based JND Model (심층 합성곱 신경망 기반 JND 모델을 이용한 인지 비디오 부호화)

  • Kim, Jongho;Lee, Dae Yeol;Cho, Seunghyun;Jeong, Seyoon;Choi, Jinsoo;Kim, Hui-Yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.213-216
    • /
    • 2018
  • 본 논문에서는 사람의 인지 시각 특성 중 하나인 JND(Just Noticeable Difference)를 이용한 인지 비디오 부호화 기법을 제안한다. JND 기반 인지 부호화 방법은 사람의 인지 시각 특성을 이용해 시각적으로 인지가 잘 되지 않는 인지 신호를 제거함으로 부호화 효율을 높이는 방법이다. 제안된 방법은 기존 수학적 모델 기반의 JND 기법이 아닌 최근 각광 받고 있는 데이터 중심(data-driven) 모델링 방법인 심층 신경망 기반 JND 모델 생성 기법을 제안한다. 제안된 심층 신경망 기반 JND 모델은 비디오 부호화 과정에서 입력 영상에 대한 전처리를 통해 입력 영상의 인지 중복(perceptual redundancy)를 제거하는 역할을 수행한다. 부호화 실험에서 제안된 방법은 동일하거나 유사한 인지화질을 유지한 상태에서 평균 16.86 %의 부호화 비트를 감소 시켰다.

  • PDF

Speech enhancement based on reinforcement learning (강화학습 기반의 음성향상기법)

  • Park, Tae-Jun;Chang, Joon-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.335-337
    • /
    • 2018
  • 음성향상기법은 음성에 포함된 잡음이나 잔향을 제거하는 기술로써 마이크로폰으로 입력된 음성신호는 잡음이나 잔향에 의해 왜곡되어지므로 음성인식, 음성통신 등의 음성신호처리 기술의 핵심 기술이다. 이전에는 음성신호와 잡음신호 사이의 통계적 정보를 이용하는 통계모델 기반의 음성향상기법이 주로 사용되었으나 통계 모델 기반의 음성향상기술은 정상 잡음 환경과는 달리 비정상 잡음 환경에서 성능이 크게 저하되는 문제점을 가지고 있었다. 최근 머신러닝 기법인 심화신경망 (DNN, deep neural network)이 도입되어 음성 향상 기법에서 우수한 성능을 내고 있다. 심화신경망을 이용한 음성 향상 기법은 다수의 은닉 층과 은닉 노드들을 통하여 잡음이 존재하는 음성 신호와 잡음이 존재하지 않는 깨끗한 음성 신호 사이의 비선형적인 관계를 잘 모델링하였다. 이러한 심화신경망 기반의 음성향상기법을 향상 시킬 수 있는 방법 중 하나인 강화학습을 적용하여 기존 심화신경망 대비 성능을 향상시켰다. 강화학습이란 대표적으로 구글의 알파고에 적용된 기술로써 특정 state에서 최고의 reward를 받기 위해 어떠한 policy를 통한 action을 취해서 다음 state로 나아갈지를 매우 많은 경우에 대해 학습을 통해 최적의 action을 선택할 수 있도록 학습하는 방법을 말한다. 본 논문에서는 composite measure를 기반으로 reward를 설계하여 기존 PESQ (Perceptual Evaluation of Speech Quality) 기반의 reward를 설계한 기술 대비 음성인식 성능을 높였다.

A Study on the Regional Frequency Analysis Using the Artificial Neural Network Method - the Nakdong River Basin (인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 낙동강 유역을 중심으로)

  • Ahn, Hyunjun;Kim, Sunghun;Jung, Jinseok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.404-404
    • /
    • 2017
  • 이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.

  • PDF

Parsimonious Neural Network and Heuristic Search Method for Software Effort Estimation Model (축약형 신경망과 휴리스틱 검색에 의한 소프트웨어 공수 예측모델)

  • Jeon, Eung-Seop
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.154-165
    • /
    • 2001
  • A number of attempts to develop methods for measuring software effort have been focused on the area of software engineering and many models have also been suggested to estimate the effort of software projects. Almost all current models use algorithmic or statistical mechanisms, but the existing algorithmic effort estimation models have failed to produce accurate estimates. Furthermore, they are unable to reflect the rapidly changing technical environment of software development such as module reuse, 4GL, CASE tool, etc. In addition, these models do not consider the paradigm shift of software engineering and information systems(i.e., Object Oriented system, Client-Server architecture, Internet/Intranet based system etc.). Thus, a new approach to software effort estimation is needed. After reviewing and analyzing the problems of the current estimation models, we have developed a model and a system architecture that will improve estimation performance. In this paper, we have adopted a neural network model to overcome some drawbacks and to increase estimation performance. We will also address the efficient system architecture and estimation procedure by a similar case-based approach and finally suggest the heuristic search method to find the best estimate of target project through empirical experiments. According to our experiment with the optimally parsimonious neural network model the mean error rate was significantly reduced to 14.3%.

  • PDF

Non-Linear Deformation Analysis of NATM Tunnel using Artificial Neural Network and Computational Methods (인공신경망과 수치해석을 이용한 NATM터널의 비선형 거동 분석)

  • Lee, Jae-Ho;Kim, Young-Su;Akutagawa, Shinich;Moon, Hong-Duk;Jeon, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.59-70
    • /
    • 2008
  • 도심지 터널의 설계, 시공 그리고 유지관리에 있어서 지반 변위 억제와 변형거동 예측은 중요하다. 국내 외 연구자들은 다양한 수치해석적인 기법과 현장 계측 결과를 이용하여 터널 시공과 관련된 변형거동 예측을 시도하였다. 하지만, 설계물성치의 산정과 지반 모델링 그리고 수치해석기법과 관련된 사용상의 어려움에 의해 아직까지 만족스러운 결과를 얻지는 못하였다. 본 논문은 수치해석적인 기법과 인공신경망을 이용하여 도심지 NATM 터널의 설계 물성치 산정과 변형거동 예측에 관한 방법을 제안하였다. 인공신경망 모델 개발을 위한 학습과 테스트과정은 데이터베이스된 수치해석결과를 이용하였다. 개발된 인공신경망 모델은 입력변수인 지반변위와 결과변수인 설계 물성치 간의 상호관계를 적절히 인식할 수 있다. 수치해석은 지반의 연화거동을 모사할 수 있는 변형률 연화모델을 적용하였다. 사례분석에 있어서 굴착 초기단계의 계측 값을 개발된 인공신경망 모델에 입력하여 설계 물성치를 계산하였으며, 수정된 설계 물성치는 수치해석을 통하여 다음 굴착단계에서의 터널 주변의 지반 변형거동을 예측하였다. 본 논문에서 제안된 방법을 토대로 시공조건이 엄밀한 도심지 터널의 설계물성치의 정량적인 평가 및 변형거동 예측이 계측이 입수된 초기 굴착단계에서 가능할 것으로 기대된다.

  • PDF

Improving the Performance of Supervised Learning Models using Error Pattern Modeling (오차패턴 모델링을 이용한 지도학습 모형에서의 성능 향상)

  • Heo, Jun;Kim, Jong-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.280-286
    • /
    • 2005
  • 본 논문은 이분형 목적변수를 가지는 데이터에서, 의사결정나무나 신경망과 같은 지도 학습(Supervised Learning)의 훈련을 통한 각종 예측 및 분류 정확도를 향상시키기 위해서 오차 패턴을 이용한 새로운 Hybrid 데이터 마이닝 기법을 제안한다. 오차 패턴을 이용한 Hybrid 기법이란 데이터 마이닝의 서로 다른 기법을 각 데이터에 적용한 다음 기법간의 불일치되는 부분만을 다시 패턴화 하여, 이를 최종 모형에 적용하여, 기존에 1개의 방법만을 사용하였을 경우보다, 더욱 좋은 정확도를 가질 수 있도록 하는 방법이다. 본 기법의 검증을 위하여, 10개의 실제 검증용 자료를 사용하였으며, 분석 결과 신경망과 의사결정나무 분석과 같은 기존의 방법보다 전체적으로 예측력이 향상됨을 보였다.

  • PDF