• 제목/요약/키워드: 신경망 모델링

검색결과 333건 처리시간 0.029초

Fe-Hf-N 자성박막의 결정화 거동 (Behavior of crystallization of Fe-Hf-N magnetic thin films)

  • 이명호;이승협;최종운;강계명
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.45-46
    • /
    • 2007
  • 역전파 신경망은 반도체 공정 모델링에 효과적으로 응용되고 있으며, 모델의 예측정확도를 향상시키기 위하여 Random Generator를 개발하였다. Random Generator의 효과가 기존이 모델에 비해 예측정확도의 향상에 영향을 주었음을 알 수 있었다. 모델링에 이용한 실험데이터는 다중 유도결합형 플라즈마 장비를 이용하여 수집하였다.

  • PDF

유전 알고리즘을 이용한 비선형 시스템의 최적 신경 회로망 구조에 관한 연구 (A Study on Optimal Neural Network Structure of Nonlinear System using Genetic Algorithm)

  • 김홍복;김정근;김민정;황승욱
    • 한국항해항만학회지
    • /
    • 제28권3호
    • /
    • pp.221-225
    • /
    • 2004
  • 본 논문은 신경 회로망과 유전 알고리즘을 이용한 비선형 시스템 모델링을 다룬다. 비선형 함수의 근사성 때문에 시스템을 식별하고 제어하기 위해서 신경 회로망을 응용한 연구가 실제로 많이 이루어지고 있다. 빠른 응답시간과 최소의 오차를 위해서는 최적구조 신경 회로망을 설계하는 것이 중요하다. 유선 알고리즘은 최근에 단순성과 견고성 때문에 점점 많이 이용되는 추세이다. 따라서 본 논문에서는 유선알고리즘을 이용하여 신경회로망을 최적화한다. 오차와 응답시간을 최소화하는 신경 회로망 구조를 위해서 유전알고리즘의 유전자로 이진 코딩하여 최적 신경회로망을 탐색하고자 한다. 시뮬레이션을 통해서, 최적 신경회로망 구조가 비선형 시스템 식별에 효과적인 것을 입증하고자 한다.

적응형 신경망-퍼지 추론법에 의한 가스터빈 발전 시스템의 모델링 및 2자유도 PID 제어기 튜닝 (Modeling and Tuning of 2-DOF PID Controller of Gas turbine Generation Unit by ANFIS)

  • 김동화
    • 조명전기설비학회논문지
    • /
    • 제14권1호
    • /
    • pp.30-37
    • /
    • 2000
  • 본 논문에서는 적웅형 신경망-퍼지 추론(ANFlS) 방법을 이용해 가스터빈의 각 변수 변화에 대해 가장 최적으로 제어 될 수 있는 전달함수를 구하고 또 2자유도 Pill제어기를 튜닝하는 문제를 연구하였다. 적응형 신경망-퍼지 추론(ANFlS)법은 기존의 퍼지나 신경망에 비해 플랜트 특성에 따라 소속함수의 모양을 적절하게 가변하면서 학습 할 수 있어 변수가 급격히 변하는 플랜트 제어에서 매우 효과적인 방법이다. 한편 가스터빈의 기동시간은 매우 짧고 제어변수도 많아 최적 기동을 위해서는 기동순간마다 제어변수 값을 가변시켜야 하나 실질적으로 이에 적합한 제어기를 설계하는 것은 매우 어렵다. 따라서 본 연구에서는 실용적인 지능형 제어기를 연구하기 위해 적웅형 신경망 퍼지 추론법을 군산 가스터빈 의 실제 운전 데이터에 적용하여 특성을 확인한 후 2자유도 Pill 제어기를 적용하여 튜닝하였다. 그 결과 적웅형 신경망올 이용한 결과가 기폰의 Pill 제어기에 비해 우수함을 나타내었다 본 연구는 실제 운전되는 가스터빈의 데이터를 이용해 특성을 고찰한 것이므로 다른 유사한 프로세스에도 유용하게 활용 할 수 있을 것으로 기대된다.

  • PDF

피에조콘을 이용한 점토의 비배수전단강도 추정에의 인공신경망 이론 적용 (Feasibility of Artificial Neural Network Model Application for Evaluation of Undrained Shear Strength from Piezocone Measurements)

  • 김영상
    • 한국지반공학회논문집
    • /
    • 제19권4호
    • /
    • pp.287-298
    • /
    • 2003
  • 본 논문에서는 피에조콘 관입시험 결과로부터 점토의 비배수전단강도를 예측하기 위한 인공신경망 이론의 적용과 최적 모델 구축에 대하여 기술하였다. 먼저 등방 및 비등방 삼축압축실험(CIUC and CAUC)으로 얻어진 비배수전단강도 결과를 바탕으로 오차역전파 알고리즘에 의하여 간단한 다층 구조를 갖는 최적 인공신경망 모델이 구성되었다. 구성된 인공신경망 모델은 모델 구축 시에 사용되지 않은 새로운 자료에 대해 비배수전단강도 예측을 수행하고 예측결과와 실내시험 결과를 비교함으로써 그 타당성이 검증되었다. 또한 기존의 이론적 방법, 경험적 방법 및 direct correlation method 등으로 예측된 비배수전단강도와 제안된 모델의 예측결과를 비교하였다. 본 논문에서 제안된 인공신경망 모델링 기법은 피에조콘 관측결과들과 비배수전단강도 간의 비선형적 상관관계를 정의하는 데에 유용하며 구성된 인공신경망 모델은 기존의 이론적 및 경험적 방법들에 비하여 예측 신뢰성이 높은 것으로 나타났다. 또한, 지금까지 주로 사용되어 온 경험적 방법들이 특정 지역에 대한 상관관계에 만족하던 것과 비교해 인공신경망 모델은 다양한 지역과 국가에서 일반적으로 적용 가능한 상관관계로서 발전될 가능성이 있음을 알 수 있었다.

얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발 (Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition)

  • 오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.55-62
    • /
    • 2005
  • 본 논문에서는 인간의 인지학적인 두뇌 원리인 대뇌피질과 해마 신경망을 공학적으로 모델링하여 얼굴 영상의 특징 벡터들을 고속 학습하고, 각 영상의 최적의 특징을 구성할 수 있는 해마 신경망 모델링 알고리즘인 HNMA(Hippocampal Neuron Modeling Algorithm)을 이용한 얼굴인식 시스템을 제안한다. 시스템은 크게 특징추출 부분과 학습 및 인식 부분으로 구성 되어 있으며, 특징추출 부분에서는 PCA(Principal Component Analysis)와 LDA (Linear Discriminants Analysis)를 순차적으로 적용하여 분별력이 좋은 특징들로 구성한다. 학습부분에서는 해마 신경망 구조의 순서에 따라 입력되는 영상 데이터의 특징들을 치아 이랑 영역에서 호감도 조정에 따라서 반응 패턴으로 이진화 하고, CA3 영역에서 자기 연상 메모리 단계를 거쳐 노이즈를 제거한다. CA3의 정보를 받는 CAI영역에서는 신경망에 의해 학습되어 장기기억이 만들어 진다. 제안한 시스템의 성능을 평가하기 위하여 실험은 표정과 포즈변화 그리고 저 화질 이미지를 각각 구분하여 인식률을 확인하였다. 실험 결과, 본 논문에서 제안하는 특징 추출 방법과 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.

ATM 트랙픽 제어기에서 신경망-퍼지 논리 제어를 이용한 지능형 모델링 기법 (Intelligent Modelling Techniques Using the Neuro-Fuzzy Logic Control in ATM Traffic Controller)

  • 이배호;김광희
    • 한국통신학회논문지
    • /
    • 제25권4B호
    • /
    • pp.683-691
    • /
    • 2000
  • 본 논문에서는 정확한 연결 설정을 결정하기 위해 Hopfield 신경회로망을 이용한 셀 다중화기와 역전파 신경회로망을 이용한 대역폭 예측기를 제안하였다. 다중화된 대역폭에서 망의 이용률을 극대화시키고 이용자 트랙픽의 QoS를 만족시키는 최소 대역폭이 새로 고안한 역전파 신경회로망 대역폭 예측기를 통하여 예측되어진다. 연결 수락 제어기는 예측된 대역폭과 망내의 사용 가능한 대역폭을 비교하여 연결 수락 여부를 판단한다. 연결이 설정된 사용자 소스를 감시하며 계약 위반시 적절한 조치를 취하는 퍼지 논리 제어 트래픽 감시 방법과 멀티미디어 트래픽의 주된 특성인 버스트 제어를 통한 망의 효율을 증가시키는 분석적 트래픽 형태 제어 방법을 제시한다. 제안된 트래픽 제어기는 성능이 우수하다고 평가된 기존의 제어기들과 성능 평가를 하였으며, 시뮬레이션 결과는 기존의 제어기보다 성능이 우수함을 보여주었다.

  • PDF

신경망 학습 기법을 이용한 도로면 크랙 인식 알고리즘 개발에 관한 연구 (A Study on the Development of Pavement Crack Recognition Algorithm Using Artificial Neural Network)

  • 유현석;이정호;김영석;성낙원
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2004년도 제5회 정기학술발표대회 논문집
    • /
    • pp.561-564
    • /
    • 2004
  • 국내외에서는 크랙실링 공법의 이점 및 도로면 유지보수 공사의 위험 요소를 인식하여 90년대 초반부터 크랙실링 자동화 장비 개발을 위한 연구를 진행하여 왔다. 기존 문헌 고찰과 도로면 크랙실링 자동화 장비(Automated Pavement Crack Sealer; APCS)의 실험실 및 현장 실험 결과, 도로면에 존재하는 크랙 네트워크를 자동으로 탐지하고 모델링하는 과정의 속도와 정확성을 향상시키는 것은 개발된 크랙실링 자동화 장비의 실용화를 위해 매우 중요한 요인으로 인식되었다 그러나, CCD 카메라를 통해 습득된 도로면 영상에서 크랙 네트워크를 완전 자동으로 인식하는 기술은 일반적인 영상 인식 분야에서 보다 외부 환경적인 요인으로 인해 낮은 인식률을 가지고 있다 본 연구를 통해 기존에 개발된 APCS 머신비전 알고리즘의 경우 도로면 영상의 환경 요인에 의해 발생된 문제점들을 많이 해결하였으나 실용화 단계에서 요구되는 크랙 인식률에는 도달하지 못하였다. 따라서, 본 연구의 목적은 기존 APCS 머신 비전 알고리즘의 완전 자동화 방식 크랙 탐지 및 모델링 알고리즘의 문제점을 분석하고 신경망 학습 기법을 이용한 크랙 인식 알고리즘을 개발하는 것이다.

  • PDF

유전자 알고리즘-응용 역전파 신경망 웨이트 최적화 기법을 이용한 플라즈마 식각 공정 모델링 (Modeling of plasma etch process using genetic algorithm optimization of neural network initial weights)

  • 배중기;김병환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.272-275
    • /
    • 2004
  • 플라즈마 식각공정은 소자제조를 위한 미세 패턴닝 제작에 이용되고 있다. 공정 메커니즘의 정성적 해석, 최적화, 그리고 제어를 위해서는 컴퓨터 예측모델의 개발이 요구된다. 역전파 신경망 (backpropagation neural network-BPNN) 모델을 개발하는 데에는 다수의 학습인자가 관여하고 있으며, 가장 그 최적화가 어려운 학습인자는 초기웨이트이다. 모델개발시, 초기웨이트는 random 값으로 설정이 되며, 이로 인해 초기웨이트의 최적화가 어렵다. 본 연구에서는 유전자 알고리즘 (genetic algorithm-GA)을 이용하여 BPNN의 초기웨이트를 최적화하였으며, 이를 식각공정 모델링에 적용하여 평가하였다. 실리카 식각공정 데이터는 $2^3$ 인자 실험계획법을 이용하여 수집하였으며, GA에 관여하는 두 확률인자의 영향을 42 인자 실험계획법을 이용하여 최적화 하였다. 종래의 모델에 비해, 최적화된 모델은 실리카 식각률, Al 식각률, Al 선택비, 그리고 프로파일 응답에 대해서 각 기 24%, 13%,, 16%, 그리고 17%의 향상률을 보였다. 이는 제안된 최적화 기법이 플라즈마 모델의 예측성능을 증진하는데 효과적으로 응용될 수 있음을 의미한다.

  • PDF

음소별 성조 정보를 이용한 신경망 기반의 한국어 음소 지속시간 모델링 (A Neural Network Based Korean Segmental Duration Modeling Using Tonal Information of Phonemes)

  • 김은경;이상호;오영환
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.84-88
    • /
    • 1999
  • 음소별 지속시간의 정확한 예측은 TTS 시스템의 자연성을 향상시키는데 중요한 역할을 한다. 기존의 한국어 음소 지속 시간의 모델링을 위해 사용된 특징 변수에는 음소 문맥 정보, 품사 정보, 운율구 내에서의 위치 정보 등이 있다. 본 논문에서는 음소별 성조 정보 값을 새로운 특징 변수로 정의하여 예측 성능을 향상시키고자 한다. 성조 정보의 표현을 위해 두 개의 비경계 성조와 여섯 개의 경계 성조를 정의한 후, 400문장의 음성 코퍼스에 음절별 표기를 수행하였다. 성조 정보를 이용한 지속 시간 예측을 위해, 출력노드에서 음소의 지속 시간을 실수 형태로 출력하는 신경망을 구성하고 이를 오류 역전파 알고리즘으로 학습시켰다. 실험 결과, 성조 정보를 사용하는 경우 실험 데이터에 대해 예측값과 실제값 사이의 상관계수로 0.863을 얻을 수 있었으며 이는 성조를 사용하지 않는 경우에 비해 향상된 성능을 나타내었다.

  • PDF