• 제목/요약/키워드: 신경망제어

검색결과 876건 처리시간 0.034초

3차원 물체의 인식 성능 향상을 위한 감각 융합 신경망 시스템 (Neural Network Approach to Sensor Fusion System for Improving the Recognition Performance of 3D Objects)

  • 동성수;이종호;김지경
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권3호
    • /
    • pp.156-165
    • /
    • 2005
  • Human being recognizes the physical world by integrating a great variety of sensory inputs, the information acquired by their own action, and their knowledge of the world using hierarchically parallel-distributed mechanism. In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile informations. The proposed system focuses on improving recognition performance of 3D objects. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse the two sensory signals. Tactual signals are obtained from the reaction force of the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of learning iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though the visual sensory signals get defects. The experimental results show that the proposed system can improve recognition rate and reduce teeming time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme for 3D objects.

비선형 시스템 제어를 위한 동적 신경망의 최적화 (Optimization of Dynamic Neural Networks for Nonlinear System control)

  • 유동완;이진하;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.740-743
    • /
    • 1998
  • This paper presents an optimization algorithm for a stable Dynamic Neural Network (DNN) using genetic algorithm. Optimized DNN is applied to a problem of controlling nonlinear dynamical systems. DNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDNN has considerably fewer weights than DNN. The object of proposed algorithm is to the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling, a nonlinear dynamic system using the proposed optimized SDNN considering stability' is demonstrated by case studies.

  • PDF

상대이득 행렬 기법을 이용한 신경망 제어기 설계에 관한 연구 (A Study on The Neural Network Controller using Relative Gain Matrix Technique)

  • 서호준;서삼준;김동식;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.606-608
    • /
    • 1997
  • In this paper, Neuro-Fuzzy Controller(NFC), a fuzzy system realized using a neural network, is to adopt for the multivariable system. In the multivariable system, the interactive effects between the variables should be taken into account. A simple compensator, using the steady-state information can be obtained for open-loop stable systems, is presented to cope with this problem. However, it should be supposed that the plant is unknown to the control system designer, but an estimate of the DC gain has been obtained by carrying out experiments on the plant. Also, if the variables are not combinated completely, it is difficult to design the controller. Therefore, we design a neuro-fuzzy controller which controls a multivariable system with only input output informations, and compare its performance with that of a PI controller. In the proposed controller, the construction of the membership functions and rule base, which is highly heuristic, can be achieved using a training process. This allows the combination of knowledge of human experts and evidence from input-output data.

  • PDF

최소제곱법과 비례로직을 이용한 시스템고압 알고리즘 (The High-side Pressure Algorithm by using a Least Square Method and a Proportional Logic)

  • 한도영;노희전
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.16-21
    • /
    • 2008
  • In order to protect the environment from the refrigerant pollution, the $CO_2$ may be regarded as one of the most attractive alternative refrigerants for an automotive air-conditioning system. Control methods for a $CO_2$ system should be different because of $CO_2$'s unique properties as a refrigerant. Especially, the high-side pressure of a $CO_2$ system should be controlled for the effective operation of the system. High-side pressure algorithms, which were composed of the pressure setpoint algorithm and the pressure setpoint reset algorithm, were developed. Pressure setpoint algorithms, by using a neural network and by using a least square method, were developed and compared. Pressure setpoint reset algorithms, by using a fuzzy logic and by using a proportional logic, were also developed and compared. Simulation results showed that a least square method was more useful than a neural network for the pressure setpoint algorithm. And a proportional logic was more practical than a fuzzy logic for the pressure setpoint reset algorithm.

  • PDF

실시간 교통상황 예보 (Forcasting of Real Time Traffic Situation)

  • 홍유식;진현수;최명복;박종국
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.292-297
    • /
    • 2000
  • 본 논문은 10개 교차로를 연동제어를 할 수 있는 새로운 교통체제 개념을 제안한다. 예를 들어서 오늘 야구경기가 8시경에 열린다고 하면 야구경기가 열리기전 1시간 흑은 1시간 30분전에 교통량이 증가할 것이다. 이럴때에는 아무리 우수한 전자 신호등 시스템도 최적녹색시간을 예측 할 수 없다. 그러므로, 본 논문에서는 평균 승용차 대기시간을 최소화하고 평균 주행속도를 향상하기 위해서 퍼지규칙 및 신경망을 이용한다. 모의실험결과 제안된 연동 녹색시간이 연동 녹색시간을 고려하지 않은 전자신호등보다 평균 승용차 대기시간을 줄일 수 있음을 입증했다.

  • PDF

감성제어 시스템의 구현 (Implementation of Human Sensibility Ergonomics Control System)

  • 김규식;최익;안현식
    • 정보통신설비학회논문지
    • /
    • 제2권2호
    • /
    • pp.46-58
    • /
    • 2003
  • 인간이 원하는 감성에 따라 환경 요소값이 변하고 이로 인해 변하는 현재 환경 안에서 인간이 자신의 최적의 쾌적감을 느끼도록 하는 것이 바로 감성공학을 응용한 제품 개발의 주목적이라고 할 수 있다. 이를 위해서는 제품 개발 이전에 인간 감성에 대한 평가와 분석 과정이 선행되어져야 한다. 본 논문은 쾌적감성과 감각의 구조를 분석한 연구결과에 대하여 신경망이론을 적용하여, 수학적으로 표현하기 어려운 인간의 쾌적감성과 감각의 관계성을 학습시킨다. 또한, 가변적 실내 환경에서 인간의 감성 요구치에 대해 환경을 변화시킴으로써 인간이 스스로 원하는 최적의 쾌적감을 느낄 수 있는 실내 환경을 모의로 구현해 볼 수 있는 시뮬레이터을 제시한다.

  • PDF

신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어 (Precision Speed Control of PMSM Using Neural Network Disturbance Observer and Parameter Compensator)

  • 고종선;이용재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.573-580
    • /
    • 2002
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

복잡한 도로 상태의 동적 비선형 제어를 위한 학습 신경망 (A Dynamic Neural Networks for Nonlinear Control at Complicated Road Situations)

  • 김종만;신동용;김원섭;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2949-2952
    • /
    • 2000
  • A new neural networks and learning algorithm are proposed in order to measure nonlinear heights of complexed road environments in realtime without pre-information. This new neural networks is Error Self Recurrent Neural Networks(ESRN), The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by back-propagation and each weights are updated by RLS(Recursive Least Square). Consequently. this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by ESRN and learning algorithm and control nonlinear models. To show the performance of this one. we control 7 degree of freedom full car model with several control method. From this simulation. this estimation and controller were proved to be effective to the measurements of nonlinear road environment systems.

  • PDF

다층 신경 회로망을 이용한 굴삭기의 위치 제어 (The Position Control of Excavator's Attachment using Multi-layer Neural Network)

  • 서삼준;권대익;서호준;박귀태;김동식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.705-709
    • /
    • 1995
  • The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it was used as a commanded feedforward input generator. A PD feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the excavator as well as the PD feedback error. By using the BP network as a feedforward controller, no a priori knowledge on system dynamics is need. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbancen and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

신경망을 이용한 운행차량의 차종인식 연구 (A Study on the Model Recognition of Moving Vehicles Using a Neural Network)

  • 이효종
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.69-78
    • /
    • 2005
  • 산업화가 활발히 이루어지면서 자동차의 수요도 세계적으로 급증하고 있다. 교통제어나 차량에 연관된 범죄 등에서 자동차의 인식에 관한 연구의 중요성 때문에 이에 관련된 연구는 오래 전부터 수행되어왔다. 본 논문에서는 이동차량의 인식 효율성을 높이기 위하여 제조회사별 차종을 인식하는 혁신적인 방법을 제시한다. 차종의 인식은 질감을 이용하여 인식하였다. 차량의 전면부는 모델별로 다르다는데 착안하여 운행차량의 전면부 영역에서 질감을 추출하였다. 획득한 질감 특징을 차종별로 3중신 경망에 학습을 시킨 후 인식을 시도하였다. 제안 알고리즘에서 차종의 인식은 95$\%$로 양호하게 나타났다.