• Title/Summary/Keyword: 식품R&D

Search Result 1,027, Processing Time 0.025 seconds

Efficiency of Analysis Agricultural R&D Program by Data Envelopment Analysis (DEA를 이용한 농림 R&D 사업의 효율성 분석)

  • Jun-Hyun Kim;Bong-Soo Lee;Jae-Kyung Kim
    • Korea Trade Review
    • /
    • v.45 no.1
    • /
    • pp.47-64
    • /
    • 2020
  • For the past few years, the Korean government has been consistently expanding its national research & development budget to accelerate economic growth through technology innovation and the enhancement of international competitiveness in global markets. The objective of this paper is to define the concept and analyze the current status of national R&D programs by measuring R&D efficiencies. We determine R&D efficiency by reflecting inputs and outcomes of the five main agricultural R&D programs between 2010 to 2015, and by categorizing and regrouping figures that may affect R&D performance. Among 1,128 targeted projects, 832 projects with patents and thesis were selected for analysis in terms of measuring technology efficiency, pure technology efficiency, and efficiency of scale. Also, the Kruskal-Wallis test was also utilized as well. As a result of empirical analysis, figures that affected the efficiency level of national R&D programs included differences in research resources, research management levels and skills, and research field. This study can be utilized as a reference for re-establishing national agricultural R&D policies, such as enhancement of national technology competitiveness in the global market environment, improving and adapting to new agricultural conditions, market expansion, national agricultural R&D efficiency, aging rural population, agricultural management cost increase, and climate change mitigation.

Automation of Glutamic Acid Fermentation (글루탐산 발효공정의 자동화)

  • Park, S.H.;Hong, K.T.;You, S.J.;Lee, J.H.;Bae, J.C.
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.202-204
    • /
    • 1983
  • A strategy for the automation of glutamic acid fermentation has been developed by the use of $CO_2$ analyzer together with a controller. It was found that a linear relationship existed between growth and $CO_2$ level in the exit gas. Therefore penicillin addition at an appropriate biomass concentration to excrete glutamate could be achieved automatically. In addition, an automatic batch feeding method (fed-batch culture) provided a means of overcoming substrate inhibition effects on growth and glutamic acid production in batch culture, thereby increasing productivity and product yield.

  • PDF