• Title/Summary/Keyword: 식생 영향

Search Result 1,343, Processing Time 0.022 seconds

Ecological Characteristics Analysis and Management Plan of Freshwater Lake Basin - A Case Study on Duryang Reservoir at Sacheon - (담수호소 유역 수변의 생태적 특성과 관리방안 연구 - 사천시 두량저수지를 사례로 -)

  • Lee, Soo-Dong;Kim, Sang-Bum
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.50-64
    • /
    • 2009
  • The freshwater lakes located at the fringe of urban cities are a habitat for diverse organisms. However, they are facing severe danger of environment deterioration and water pollution caused by reckless development of the area. In this study, an ecological management plan was suggested to promote the biodiversity through appointing management area based on the research and analysis data of flora and fauna as well as maintain biodiversity and harmonize utilization of freshwater lakes such as Duryang Reservoir at Sacheon, Gyeongsangnam-do. Base on the data of ecological research and analysis, this study conducted research on biotope assessment, wild life habitat assessment and presence of protected species. As a result, the ecosystem conservation area including multi-layer structured natural forests, waterside and wetland that are home to various species and the edge area with high habitat diversity were recognized as highly preservable regions. Management areas were ecologically disturbed region, highly polluted commercial district and damaged waterside caused by fishing. Proactive management must be implemented through vegetation management such as vegetation transition and shrub planting as well as establishing pollutant management system. The deterioration of waterside and forest vegetation of freshwater lake has a direct influence on biodiversity and water quality. Therefore, the conservation area and development area should be totally separated from each other, and the development area must be restored and managed strictly.

Studies on major plant communities distribution factors of the Gayasan national park using GIS (GIS 기반 가야산국립공원의 주요 식물군락 분포요인 분석)

  • Kim, Bo-Mook;Yang, Keum-Chul
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.164-171
    • /
    • 2017
  • This study analysed 7 distribution features of dominant natural vegetation, such as elevation, slope, aspect, topographic index, annual mean temperature, warmth index and potential evapotranspiration using geographic information system(GIS) in Gayasan national park. The Gayasan national park has total 128 communities in which Pinus densiflora community occupies with 29.42%, Quercus mongolica community 27.66% relatively. These two communities comprise 80.58% out of total area, considering Q. mongolica & P. densiflora dominantly mixed communities. The Q. mongolica communities range around 575~1,065m(80.4%) in elevation, and the P. densiflora communities range around 465~965m(84.1%), respectively. The slopes of those two communities areas showed over $21^{\circ}$(78.0%) and (71.3%) respectively. In terms of slope aspect occurrence, Q. mongolica communities occur mostly on northern slope, and the P. densiflora communities on southern slope. The topographic indices of both communities occur around 5~6 most frequently. The Annual mean temperature distributions of Q. mongolica and P. densiflora range $7{\sim}8^{\circ}C$(83%), $8{\sim}9^{\circ}C$(84%), respectively, And the warmth index range of Q. mongolica is $59{\sim}70^{\circ}C{\cdot}month$ and the P. densiflora community, $58{\sim}88^{\circ}C{\cdot}month$. The potential evapotranspiration ranges mostly from 560 to 590mm/yr, in Q. mongolica communities, and from 580 to 610mm/yr in P. densiflora communities.

A Review of Vegetation Succession in Warm-Temperate Evergreen Broad-Leaved Forests -Focusing on Actinodaphne lancifolia Community- (난온대 상록활엽수림 지역의 식생천이계열 고찰 -육박나무군락을 중심으로-)

  • Park, Seok-Gon;Choi, Song-Hyun;Lee, Sang-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.77-96
    • /
    • 2018
  • We investigated and analyzed three Korean island sites (Bijin-do, Ae-do, and Bogil-do) and one Japanese site (Tachibanayama) of sword-leaf litsea (Actinodaphne lancifolia) forests, known as the climax forest, to discuss the vegetation succession sere of warm-temperature evergreen broad-leaved forests. We then reviewed the literature in Korea, Japan, China, and Taiwan to consider the distribution characteristics of evergreen broad-leaved forests, vegetation succession sere, and climax tree species. Although Mt. Tachibana and Ae-do showed the most advanced vegetation structure, the soil and ordination (CCA) analysis indicated that it was not enough to consider that the sword-leaf litsea forest was at the climax stage in the warm-temperature region. The Actinodaphne lancifolia forest is sparsely distributed in Korea and Japan while the common types of vegetation in the warm temperate zone region in East Asia are Machilus spp., Castanopsis spp., and Cyclobalanopsis spp. The vegetation succession sere of the Korean warm-temperature region is thought to have a secondary succession such as Pinus thunbergii, P. densiflora, Q. serrata (early stage) through Machilus thunbergii, innamomum yabunikkei, Neolitsea sericea, Actinodaphne lancifolia (middle stage) to Castanopsis sieboldii, Q. acuta, Q. salicina (climax stage). However, Machilus thunbergii will be the climax species as an edaphic climax in places where there is a strong influence of the sea wind, or it is difficult to supply the seeds of Castanopsis spp. and Cyclobalanopsis spp.

Postglacial Vegetation History of the Central Western Region of the Korean Peninsula (한반도 중서부 지역의 후빙기 식생 변천사)

  • Jang, Byeong-O;Yang, Dong-Yoon;Kim, Ju-Yong;Choi, Kee-Ryong
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.573-580
    • /
    • 2006
  • A sediment core from the Cheollipo arboretum ($36^{\circ}$ 47' 57'N, $126^{\circ}$ 09' 04') was studied for pollen analysis in order to reconstruct postglacial vegetational change and environmental changes around the central western region of the Korean Peninsula. The record shows four pollen assemblage zones: Zone CHL-I, Quercus stage (ca. 9,300$\sim$6,200 yr BP): zone CHL-II, Quercus-Pinus stage (ca. 6,200$\sim$4,600 yr BP); zone CHL- III, Pinus-Quercus stage (ca. 4,600$\sim$1,160 yr BP): zone CHL-IV and Pinus stage (ca. 1,160 yr BP-present). During the 9,300$\sim$8,500 yr BP, the early Holocene, researchers have guessed a piece of cool-temperate norihern/altimontane mixed coniferous and deciduous broad-leaved forest. Between 8,500$\sim$4,600 yr BP the Quercus dominated the landscape of study area and the established dates of this typical cool-temperate central/montane deciduous broad-leaved forest vegetation might be ca. 6500 yr BP, and then the Pinus developed around the site at ca. 5,700 yr BP. The abrupt increase of Pinus and NAP (non-arboreal pollen) after ca. 1,100 yr BP indicates the vegetation changes due to human activities. From the dynamics of the Chenopodiaceae pollen indicating salt marsh and freshwater pollen flora such as Typha, Trapa, Nymphoides and so forth, we suggest that the tidal flat was altered into freshwater lake around 6,500 yr BP.

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.

Atmospheric Correction Effectiveness Analysis of Reflectance and NDVI Using Multispectral Satellite Image (다중분광위성자료의 대기보정에 따른 반사도 및 식생지수 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.981-996
    • /
    • 2018
  • In agriculture, remote sensing data using earth observation satellites have many advantages over other methods in terms of time, space, and efficiency. This study analyzed the changes of reflectance and vegetation index according to atmospheric correction of images before using satellite images in agriculture. Top OF Atmosphere (TOA) reflectance and surface reflectance through atmospheric correction were calculated to compare the reflectance of each band and Normalized Vegetation difference Index (NDVI). As a result, the NDVI observed from field measurement sensors and satellites showed a higher agreement and correlation than the TOA reflectance calculated from surface reflectance using atmospheric correction. Comparing NDVI before and after atmospheric correction for multi-temporal images, NDVI increased after atmospheric corrected in all images. garlic and onion cultivation area and forest where the vegetation health was high area NDVI increased more 0.1. Because the NIR images are included in the water vapor band, atmospheric correction is greatly affected. Therefore, atmospheric correction is a very important process for NDVI time-series analysis in applying image to agricultural field.

Classification of Forest Vertical Structure Using Machine Learning Analysis (머신러닝 기법을 이용한 산림의 층위구조 분류)

  • Kwon, Soo-Kyung;Lee, Yong-Suk;Kim, Dae-Seong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.229-239
    • /
    • 2019
  • All vegetation colonies have layered structure. This layer is called 'forest vertical structure.' Nowadays it is considered as an important indicator to estimate forest's vital condition, diversity and environmental effect of forest. So forest vertical structure should be surveyed. However, vertical structure is a kind of inner structure, so forest surveys are generally conducted through field surveys, a traditional forest inventory method which costs plenty of time and budget. Therefore, in this study, we propose a useful method to classify the vertical structure of forests using remote sensing aerial photographs and machine learning capable of mass data mining in order to reduce time and budget for forest vertical structure investigation. We classified it as SVM (Support Vector Machine) using RGB airborne photos and LiDAR (Light Detection and Ranging) DSM (Digital Surface Model) DTM (Digital Terrain Model). Accuracy based on pixel count is 66.22% when compared to field survey results. It is concluded that classification accuracy of layer classification is relatively high for single-layer and multi-layer classification, but it was concluded that it is difficult in multi-layer classification. The results of this study are expected to further develop the field of machine learning research on vegetation structure by collecting various vegetation data and image data in the future.

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Characteristics of Vegetation and Biota in the Gahwacheon Estuarine Wetland, Sacheon, South Korea: Proposals for the Ecosystem Conservation (사천 가화천하구습지의 식생 및 생물상 특성: 생태계 보전 대책의 제안)

  • Yeounsu, Chu;Kwang-Jin, Cho;Jeoncheol, Lim
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • Owing to their high bioproductivity and unique physical environment, estuarine wetlands are gaining importance in national biodiversity management and habitat conservation. With regard to conservation and management of estuarine wetlands, this study analyzed the ecological characteristics of Gahwacheon Estuarine Wetland, an open estuary with various habitat types. Data from vegetation and biotic surveys have shown that 12 plant communities of five physiognomic vegetation types, including lentic herbaceous vegetation, halophytic herbaceous vegetation, and chasmophytic herbaceous vegetation. Due to the discharge of Namgang Dam and the effect of the tide, vegetation are distributed along the narrow waterside area. In terms of biodiversity, a total of 715 species, including 12 endangered wildlife species, were identified. Species diversity was relatively high in sections I and III where various riverbed structures and microhabitats were distributed. Due to the effect of the brackish water area following the inflow of seawater, endangered wildlife of various functional groups were also found to be distributed, indicating the high conservation value of that area. The collection of ecological information of the Gahwacheon Estuarine Wetland can be used as a framework for establishing the basis for conservation and management of the estuarine ecosystem and support policy establishment.

Flood Stage Evaluation for Vegetated Models in River Scales (하천규모에 따른 식생모델의 홍수위 검토)

  • Lee, Jong-Seok;Kim, Byeong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.509-518
    • /
    • 2010
  • This study aims to evaluate for flood stage on vegetated patterns by clearance space rate (CSR) using the numerical models divided into large, medium and small river in river scales with watershed area or design flood discharge. Using the HEC-RAS (1D) and RMA-2 (2D) numerical models, evaluated results of the design flood stages before vegetated modeling of these rivers which CSR in the 1D are obtained over 100% at all points in large river and medium river of except upper part 2 sections, but small river is showed about average 46.0%. It is judge that evaluated results in the 2D are obtained average 101.5% in large river, 96.7% in medium river, 71.1% in small, respectively and because of 1D mainly used to formulate of the river's master plan. However, after vegetated modeling, CSR in case of 1D showed with 91.8% in large river, 74.2% and 38.3% in medium and small rivers, respectively and 2D showed with 95.5% in large river, 86.72 and 37.0% in medium and small rivers, respectively. It is estimate that evaluated results using the 2 numerical models by the vegetated modeling are less affected the CSR for large river in a large area more than the cross section area in medium and small rivers.