• Title/Summary/Keyword: 식생 관리

Search Result 948, Processing Time 0.026 seconds

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

Suggestions for improving data quality assurance and spatial representativeness of Cheorwon AAOS data (철원 자동농업기상관측자료의 품질보증 및 대표성 향상을 위한 제언)

  • Park, Juhan;Lee, Seung-Jae;Kang, Minseok;Kim, Joon;Yang, Ilkyu;Kim, Byeong-Guk;You, Keun-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • Providing high-quality meteorological observation data at sites that represent actual farming environments is essential for useful agrometeorological services. The Automated Agricultural Observing System (AAOS) of the Korean Meteorological Administration, however, has been deployed on lawns rather than actual farm land. In this study, we show the inaccuracies that arise in AAOS data by analyzing temporal and vertical variation and by comparing them with data recorded by the National Center for AgroMeteorology (NCAM) tower that is located at an actual farming site near the AAOS tower. The analyzed data were gathered in August and October (before and after harvest time, respectively). Observed air temperature and water vapor pressure were lower at AAOS than at NCAM tower before and after harvest time. Observed reflected shortwave radiation tended to be higher at AAOS than at NCAM tower. Soil variables showed bigger differences than meteorological observation variables. In August, observed soil temperature was lower at NCAM tower than at AAOS with smaller diurnal changes due to irrigation. The soil moisture observed at NCAM tower continuously maintained its saturation state, while the one at AAOS showed a decreasing trend, following an increase after rainfall. The trend changed in October. Observed soil temperature at NCAM showed similar daily means with higher diurnal changes than at AAOS. The soil moisture observed at NCAM was continuously higher, but both AAOS and NCAM showed similar trends. The above results indicate that the data gathered at the AAOS are inaccurate, and that ground surface cover and farming activities evoke considerable differences within the respective meteorological and soil environments. We propose to shift the equipment from lawn areas to actual farming sites such as rice paddies, farms and orchards, so that the gathered data are representative of the actual agrometeorological observations.

Characteristics of Nutrients Release by Submerged Plants in Flood Control Reservoirs within Juam Lake (주암호 홍수조절용지내 침수 식물체의 영양염류 용출 특성)

  • Kang, Se-Won;Seo, Dong-Cheol;Han, Myung-Ja;Han, Jong-Hak;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Yeong-Jae;Choi, Ik-Won;Lee, Young-Han;Heo, Jong-Soo;Kim, Hyun-Ook;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.271-277
    • /
    • 2011
  • To improve the quality of water from water supply source and to establish the management plan of dead plants in flood control reservoir around Juam Lake, the effect of water quality by dead plant in column with passing time was investigated. In column test, the amounts of release by Carex dimorpholepis were $7,893-7,917mg\;m^{-2}\;month^{-1}$ COD, $2,711-2,816mg\;m^{-2}\;month^{-1}$ T-N and $342-547mg\;m^{-2}\;month^{-1}$ T-P. The amounts of release by Miscanthus sacchariflorus were $6,487-6,507mg\;m^{-2}$ COD, $1,813-1,868mg\;m^{-2}$ T-N and $226-405mg\;m^{-2}\;month^{-1}$ T-P in column. Therefore, the release of COD, T-N and T-P by Carex dimorpholepis were more than those by Miscanthus sacchariflorus Benth in column.

Mapping of the Damaged Forest by Oak Wilt Disease in Bukhansan National Park (북한산국립공원 참나무시들음병 피해지 맵핑 연구)

  • Yeum, Jung-Hun;Han, Bong-Ho;Choi, Jin-Woo;Jeong, Hee-Un
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.6
    • /
    • pp.704-717
    • /
    • 2013
  • This study aims to provide basic data for management and prevention of infection damage by Oak wilt disease through mapping method of status with infected level in damaged area of Bukhansan National Park. Survey was carried out in the distributed area of oak trees with mapping unit of polygon of actual vegetation and mapped of infection ratio and infection index applying weight according to infected level. Infection ratio of oak trees in Bukhansan National Park was 58.5%, and lightly damaged ratio was 29.6%, half of the damaged ratio was 16.1%, seriously damaged ratio was 8.8% and withered ratio was 4.1%. It was serious to be infected from Beomgol ridge in Wondobong district to Hyeongjaebong in Jeongrung district. Although the infected ratio of the western part of Songchu district, Sanseong district and Gugi district centering main ridge of Bukhansan National Park was low, it of ridge and main valley was high. Infection index of hardly damaged area was 39.1% of whole area, and slightly damaged area was 41.0%, half of the damaged area was 16.1%, seriously damaged area was 3.3% and alarmed withering area was 0.4%. Infection index was high around Musugol valley in Dobong district and Jaunbong, and it of Bohyunbong of Jeongrung district and the part of Hyojari valley of Sanseong district was serious. Predicted numbers of the trees affected Oak wilt disease compared to the distributed area of oak trees was 1,585,937 trees among 2,709,147 trees of Quercus spp. 352,931 trees among the 306,161 trees of oak were infected in Woi district, the most seriously infected area and 53,141 trees among the 145,747 trees of oak was infected in Gugi district, the most slightly infected area.

Study on Ecological Restoration of Endangered Species in Abandoned Paddy of Korea and Management Plan for its Habitat (한국의 묵논에서 멸종위기식물의 복원생태학적 연구 및 서식지 관리방안)

  • Lee, Soo-In;Lee, Eung-Pill;Hong, Young-Sik;Kim, Eui-Joo;Lee, Seung-Yeon;Park, Jae-Hoon;Jang, Rae-Ha;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.81-91
    • /
    • 2020
  • As part of method for ecologically utilizing abandoned paddy, potential of the abandoned paddy as a target site for ex-situ conservation of 9 endangered species of different life form was confirmed by considering the nature of rice paddy. In order to create Dum-bung, a component of traditional Korean rice paddy, a part of the abandoned paddy was modified to change the water environment. The seeds, asexual reproductive and sexually reproductive individuals of each endangerd species were transplanted into the abandoned paddy to observe the survival rate and phenological response for 1 year, and then monitored for 2 years. As a result, Hydrophyte 4 taxa (Euryale ferox, Saururus chinensis, Dysophylla yatabeana, Menyanthes trifoliata), Geophyte taxa 1 (Epilobium hirsutum), and Hemicryptophyte taxa 1 (Cicuta virosa) could be introduced into the abandoned paddy. In particular, Euryale ferox, Dysophylla yatabeana, and Menyanthes trifoliata should be introduced into Dum-bung, and Saururus chinensis, Epilobium hirsutum, and Cicuta virosa should be introduced into paddy wetland. Growth of Euryale ferox and Brasenia schreberi was inhibited by herbaceous species, and the growth of Epilobium hirsutum was inhibited by herbivores. Therefore, in order to help efficient settlement of endangered plants introduced in abandoned paddy, it is necessary to remove herbs that inhibit growth and to manage herbivores. In addition, it is necessary to prevent the collapse of paddy bank by planting on the paddy field trees or herbaceous forming vegetation mat. When using abandoned paddy ecologically, it is effective to diversify the moisture environment by creating a Dum-bung to increase biodiversity.

Effects of Sowing Method and Summer Management on Yield , Dead Matter , Weed Development and Ground Cover of Orchargrass (Dactylis glomerata L.) Meadow (파종방법 및 여름철관리가 Orchargrass ( Dactylis glomerata L. ) 채초지의 수량 , 고사물량 , 잡초발생 및 피복율에 미치는 영향)

  • 권찬호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.71-78
    • /
    • 1987
  • This experiment was carried out to examine the effects of sowing method and summer management on the dry matter yield, dead matter, weed development and ground cover of orchardgrass (Dactylis glomerata L.) meadow. The experiment was allocated as a split-split plot design with three replications. The main plots were sowing method of drilling and broadcasting, sub plots were drainage of experimental field, adequate and inadequate, and sub-sub plots were cutting timeof orchardgrass, cutting before rainy season started and cutting after rainy season ended. The experiment was undertaken over a period of 14 months from September, 1983 to October, 1984. The results obtained are summarized as follows: 1. There were no significant differences in dry matter yield among treatments at the first cutting, but cutting before rainy season produced significantly more forage yield ($P{\le}0.01$) than cutting after rainy season at the second and third cuts. At the third cutting, drilled orchardgrass meadow showed a significant dry matter yield ($P{\le}0.05$) than broadcast orchardgrass meadow, 2. The dead matter of orchardgrass was accumulated only at the second cutting when orchardgrass meadow cut after rainy season. Orchardgrass produced in the adequate and inadequate drainage plots consisted 20.4 and 35.9% of dead material, respectively, but no significant difference was found between two drainage treatments. 3. Drilled orchardgrass meadow produced significantly less weeds ($P{\le}0.05$) than broadcast orchardgrass meadow, but the plots cut after rainy season produced significantly more weeds ($P{\le}0.01$) than the plots cut before rainy season. 4. The percent ground cover of orchardgrass in the plots cut before rainy season was significantly higher ($P{\le}0.01$) than that in the plots cut after rainy season at the second cutting. Drilled plots showed a slight increase in the ground cover than the broadcast, but the difference was not significant. The same trend of ground cover of the meadow estimated at the second cutting was sustained after the third cutting. 5. Based on the results of the experiment, it indicates that the second cut of orchardgrass should be made before rainy season related for maintaining high yield of the meadow. Drilling as a sowing method of orchardgrass meadow could be adopted in the view point of reducing weed development.

  • PDF

The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean (태안 남해포 갯벌 패류양식해역의 환경특성)

  • Choi, Yoon Seok;Park, Kwang Jae;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Song, Jae Hee
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 2013
  • To assess the effect of environmental factors on the sustainability of cultured production shellfish, we investigated the habitat characteristics of tidal flat (Namhae-po in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several site of tidal flat to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain size for research area of tidal flat were similar at the ratio of silt and clay in comparison with the other site of it. The C/N ratio was more than 5.0, reflecting the range arising from the mix of marine organism and organic matter. The C/S ratio (about 2.8) showed that survey area had anoxic or sub-anoxic bottom conditions. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. Adult surf clam (Mactra veneriformis) density was highest at St. 2 (middle part of the Namhae-po), on the other hand, surf clam spat density was highest at St. 3 (lower part of the Namhae-po). Heavy rain, terrigenous suspended clay with fresh water from neighboring agricultural land, and severe high air temperature during summer could be thought as detrimental causes of spat and adult mortality in Namhae-po tidal flat. We suggested that the growth of shellfish in the tidal flat was effected by the various environmental conditions, so an improvement in the cultured method was needed.

Distributional Characteristics and Management Plan for the Floristic and Naturalized Plants of Yeongcheon River in Jinju City (진주시 영천강의 식물상 및 외래식물 분포와 관리방안)

  • Lee, Jae Sook;Park, Sam-Bong;Park, Jeong-Geun;An, Jong Bin;Song, Jin-Heon;Hwang, Jun;Kim, Bong-Gyu;Choo, Gab-Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.493-512
    • /
    • 2019
  • The purpose of this study was to provide the basic data necessary for establishing a vegetation management plan for the Yeongcheon River area by presenting a better understanding of the distribution and characteristics of naturalized plants through an investigation of the flora present in the Yeongcheon riverside, in Jinju, South Korea. Vascular plants were investigated for a total of 470 taxa, including 90 families, 282 genera, 425 species, one sub-species, 38 varieties, and six forms. Together, these accounted for 9.62% of the vascular plants (4,881 species) in Korea. Gramineae was the most abundant at 77 taxa (16.38%), followed by Cyperaceae at 56 taxa (11.91%), Leguminosae at 33 taxa (7.02%), Cyperaceae at 25 taxa (5.32%), and Rosaceae at 22 taxa (4.86%). Thirty species of indicator plants were surveyed and, among them, annual plants and hemicryptophytes accounted for a significantpercentage. Among ground plants, trees, shrubs, and sub-shrubs were surveyed to include 23 (4.89%), 17 (3.61%), and 14 taxa (2.97%), respectively. Furthermore, 36 aquatic plant taxa were found. Six rare plant taxa were surveyed including Penthorum chinense, Melothria japonica, Aristolochia contorta, Acorus calamus, Millettia japonica, and Magnolia kobus. Floristic special plants comprised 35 taxa,including 26 families, 34 genera, 34 species, and one variety. Plants endemic to Korea included six species. Naturalized plant species comprised 71 taxa, including 18 families, 53 genera, 68 species, and three varieties. The naturalization rate and urbanization index were 15.1% and 22.1%, respectively. Ecological disturbance species in Korea comprised nine taxa, including four families, eight genera, eight species, and one variety. These groups accounted for 64% of the ecological disturbance species in Korea. Ecological disturbance species in Korea tended to increase toward the downstream of Yeongcheon River. In particular, Ambrosia artemisiifolia and Sicyos angulatus, which cause human allergies and disrupt the habitats of plants and animals, must be removed artificially.

Processing and Quality Control of Flux Data at Gwangneung Forest (광릉 산림의 플럭스 자료 처리와 품질 관리)

  • Lim, Hee-Jeong;Lee, Young-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.82-93
    • /
    • 2008
  • In order to ensure a standardized data analysis of the eddy covariance measurements, Hong and Kim's quality control program has been updated and used to process eddy covariance data measured at two levels on the main flux tower at Gwangneung site from January to May in 2005. The updated program was allowed to remove outliers automatically for $CO_2$ and latent heat fluxes. The flag system consists of four quality groups(G, D, B and M). During the study period, the missing data were about 25% of the total records. About 60% of the good quality data were obtained after the quality control. The number of record in G group was larger at 40m than at 20m. It is due that the level of 20m was within the roughness sublayer where the presence of the canopy influences directly on the character of the turbulence. About 60% of the bad data were due to low wind speed. Energy balance closure at this site was about 40% during the study period. Large imbalance is attributed partly to the combined effects of the neglected heat storage terms, inaccuracy of ground heat flux and advection due to local wind system near the surface. The analysis of wind direction indicates that the frequent occurrence of positive momentum flux was closely associated with mountain valley wind system at this site. The negative $CO_2$ flux at night was examined in terms of averaging time. The results show that when averaging time is larger than 10min, the magnitude of calculated $CO_2$ fluxes increases rapidly, suggesting that the 30min $CO_2$ flux is influenced severely by the mesoscale motion or nonstationarity. A proper choice of averaging time needs to be considered to get accurate turbulent fluxes during nighttime.