• Title/Summary/Keyword: 식물 형질전환

Search Result 557, Processing Time 0.03 seconds

Responses of Transgenic Tobacco Plants Expressing Sweet Potato Peroxidases to Gamma Radiation (감마선에 대한 고구마 Peroxidase 형질전환 담배식물체의 반응)

  • 윤병욱;이행순;권석윤;김재성;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.265-269
    • /
    • 1999
  • Transgenic tobacco plants expressing either a sweet potato anionic peroxidase (POD) (swpal) or neutral POD (swpnl) were irradiated by gamma radiation, and the gamma radiation-induced biochemical changes in antioxidant enzymes and plant growth inhibition were investigated at 30 days after treatment. Gamma radiation significantly inhibited the growth of all plants regardless of transgenic or nontransformed plants, showing a dose-dependent inhibition. In high dosage of 50 and 70 Gy, plant heights were severely retarded and new leaves does not emerged. No significant changes in antioxidant enzymes such as POD, superoxide dismutase and catalase were observed in all plants regardless of irradiation dosages ranging from 10 to 50 Gy. These results suggest that sweet potato PODs may be not involved in the protection against the oxidative stress induced by gamma radiation.

  • PDF

Transformation of Maize Controlling Element Ac and Ds into Armoracia rusticana via, Agrobacterium tumefaciens (Agrobacterium tumefaciens를 매개로 한 옥수수 유동유전자 Ac 및 Ds에 의한 서양고추냉이 (Armoracia rusticana)의 형질전환)

  • 배창휴;노일섭;임용표;민경수;김동철;김학진;이효연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.319-326
    • /
    • 1994
  • For the gene tagging of Armoracia rusticana, maize controlling element Ac and Ds were introduced into A.rusticana via Agrobacterium-mediated transformation method. We established an efficient in via regeneration and transformation system for gene transfer in A. rusticana. The optimum in via regeneration condition has been obtained from leaf, petiole and root organs on modified MS medium supplemented with NAA 0.1 mg/L plus BA 1.0 mg/L for direct shooting and with free growth regulators for root induction for transformation, the leaf, petiole and root explants of A. rusticana were concultivated with Agrobacterium tumefaciens, LBA4404 which carries a binary vector pEND4K containing maize controlling element Ac or Ds, respectively: Selections were performed in the shoot induction medium supplemented with 100 mg/L kanamycin, and 500 mg/L carbenicillin transformation frequency showed about 8 to 10% in case of leaf disks. PCR md Southern blot analyses showed that the Ac and the Ds elements were integrated into the chromosome of donor plants.

  • PDF

Genetic Transformation of Intact Potato Microtuber by Particle Bombardment (Particle Bombardment 방법을 이용한 인공 씨감자의 형질전환)

  • Choi, Kyung-Hwa;Jeon, Jae-Heung;Kim, Hyun-Soon;Jung, Young-Hee;Im, Yong-Pyo;Jung, Hyuk
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • In vitro grown microtubers of potato (cv Jaju) were used for introduction of herbicide resistance gene using bombardment with DNA-coated particles. The apical shoot-tip area of newly sprouted microtubers were intensively bombarded. After bombardment, microtubers were germinated and transplanted in a greenhouse. Northern blot analysis indicated that bar gene was expressed in two plantlets. After 5 weeks of growing, commercial herbicide Basta was sprayed to screen the resistant plants. All untransformed potato plants died after 7 days while two transgenic plants survived.

  • PDF

Genetic Transformation of Lettuce (Lactuca sativa L.) with Agrobacterium tumefaciens (Agrobacterium tumefaciens에 의한 상추 (Lactuca sativa L.)의 형질전환)

  • 최언옥;양문식;김미선;은종선;김경식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.55-58
    • /
    • 1994
  • Agrobacterium tumefaciens LABA4404 harboring plant binary vector, pBI121, was used for genetic transformation of lettuce (Lactuca sativa t.). Cotyledon segments were infected with A. tumefaciens LBA4404 by cocultivation method and regenerated. Regenerated letture was subject to molecular analyses for integration into plant nuclear genome and expression of ${\beta}$-glucumnidase (GUS) gene. Southern and Northern blot analyses demonstrated that GUS gene was integrated into plant nuclear genome and expressed into its mRNA. The expression of GUS gene into its protein was confirmed by specetrophotometric assay of GUS activity.

  • PDF

In vitro Propagation of Transgenic Ginsengs Introduced with Ferritin Light Heavy Chain Gene through Single Embryo Culture (Ferritin Light Heavy Chain 유전자가 도입된 인삼형질전환체의 단일배발생을 통한 식물체의 기내증식)

  • 윤영상;김종학;김무성;양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.161-168
    • /
    • 2004
  • Optimal regeneration conditions of ginseng transformants were studied. It has been known that Ferritin Light Heavy Chain (FLHC) gene remove the several heavy metal by combination, store and transport. To obtain the ginseng tolerant to heavy metal, binary vector was introduced in Agrobacterium by tri-parental mating and then Agrobacterium tumefaciens MP90/FLHC was selected on the AB media and MS media containing kanamycin. Explants were co-cultured with Agrobacterium tumefaciens MP90/FLHC, which contained NPT II as a selectable marker, tadpole ferritin heavy chain (FLHC) gene and human ferritin light chain gene and then a number of embryos were induced. The induced embryo transferred to shooting media consisting of MS medium supplemented with GA 10 mg/L. As a result of examination that induced the normal growth of transfomants, transformants showed the equivalent growth in both root and shoot on the media containing the 1/3 MS.

Effect of Boric Acid on In Vitro Pollen Germination in Transgenic Plants Expressing Monoclonal Antibodies (단일항체를 발현하는 형질전환 식물체의 In Vitro 화분발아에 대한 Boric Acid의 영향)

  • Ahn, Mi-Hyun;Lee, Kyung-Jin;Ko, Ki-Sung
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.339-346
    • /
    • 2007
  • Pollen germination viability is an essential factor to produce seeds from pollination and fertilization, which are required to maintain plant generation. In this study, we tried to identify the effect of boric acid on pollen germination and tube grouch in non-transgenic and transgenic plants expressing monoclonal antibodies (anti-colorectal cancer mAb CO17-1A, anti-breast cancer mAb BR55, and anti-rabies virus mAb57). The pollen of non-transgenic plant was treated with different concentration of boric acid (0, 5, 10, 15, 20, $40{\mu}g/mL$) in germination buffer to investigate its effect on in vitro pollen germination. At $20{\mu}g/mL$ of boric acid, tile pollen germination rate was the highest (49.5%) compared to other concentrations. In general, the germination rate significantly increased 3-10 folds in boric acid ($20{\mu}g/mL$) treated group in non-transgenic and transgenic plants. Also, the pollen tube length increased in boric acid ($20{\mu}g/mL$) treated groups. In the treated group, the pollen tube length increased until 3 h boric acid treatment and decreased after the 3 h, indicating that the 3 h is the most appropriate incubation time period. Western blot analysis showed that the mAb transgene expression was more stable in leaf than pollen in transgenic plants. This study suggested that $20{\mu}g/mL$ of boric acid is ideal concentration to induce in vitro pollen germination of transgenic plants expressing therapeutic monoclonal antibodies, indicating stable pollination and fertilization in transgenic plants.

Analysis of Flavonoid 3',5'-Hydroxylase Gene in Transgenic Petunia (Petunia hybrida) Plants (형질 전환된 페튜니아 식물체에서의 Flavonoid 3',5' -Hydroxylase 유전자의 분석)

  • 김영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.323-327
    • /
    • 1998
  • The flavonoid biosynthetic pathway has been studied as a genetic model system, particularly in Petunia hybrida. In order to study the flavonoid biosynthetic pathway, we constructed a fusion gene system between Cauliflower Mosaic Virus (CaMV) 35S promoter and eggplant flavonoid 3', 5'-hydroxylase in pBI 121 plasmid. An optimal condition for plant regeneration was observed when internode explants were cultured on MS medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. For plant transformation internode explants of Petunia hybrida were precultured on BM medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. Putative transgenic plants were selected on medium containing kanamycin 50 mg/L plus cefotaxim 300 mg/L. Putative selected transformants were confirmed by amplification of selectable marker gene (nptII) by polymerase chain reaction (PCR) and Southern hybridization of flavonoid 3',5'-hydroxylase gene.

  • PDF

Inheritance and Expression of Antisense Polygalacturonase Gene in Transgenic Tomato (Antisense Polygalacturonase 유전자 형질전환 토마토의 후대 발현 분석)

  • 김영미;한장호;김용환;이성곤;황영수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.131-134
    • /
    • 1998
  • $\textrm{T}_{5}$ progeny of one transgenic tomato line (To9) carrying antisense polygalacturonase (PG) cDNA was generated by selfing. Five $\textrm{T}_{5}$ plants were used to analyse in detail. The PG antisense gene was stably inherited through fifth generations. In all five $\textrm{T}_{5}$ plants, expression of the antisense transcripts were detected. In consequence, it led to a reduction of the PG enzyme activity in ripe fruit to between 37% and 65% that of normal. In two plants the expression of endogenous PG gene was inhibited in ripe fruit.

  • PDF

Expression of Proteinase Inhibitor II gene in Transgenic Flowering Cabbage, Brassica oleracea var. acephala DC. (형질전환된 꽃양배추에서 Proteinase Inhibitor II 유전자의 발현)

  • 김창길;정재동
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.95-98
    • /
    • 1998
  • Hypocotyl explants of flowering cabbage were cocultured with Agrobacterium tumefaciens LBA4404;;pGA875 harboring proteinase inhibitor II(PI-II) cDNA and then regenerated into plants. Sucessful transcripts of PI-II gene were detected by RNA dot blot analysis. Bioassay was conducted on transgenic flowering cabbage. It was confirmed that insecticidal activities of transformants were much higer than that of control plants. In progeny test of hansformants, 27.4% of T$_1$ seeds was resistant on MS medium containing 20 mg/L kanamycin.

  • PDF

Identification of Artificial Operon Gene Expression via Yeast Mitochondrial Transformation (효모의 미토콘드리아 형질전환을 통한 인위적인 operon 형식의 유전자 발현 규명)

  • Kim Kyung-Min;Sul Il-Whan
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.365-368
    • /
    • 2006
  • Yeast mitochondrial transformation has been confirmed by cell death and CFP expression (CDF: cell death factor gene). Expression vector containing CDF and CFP driven by one TPI (Triose-phosphate isomerase) promoter (called artificial operon type) was bombarded to Yeast. Interestingly, yeast cells were progressively deformed into unusual shapes and lysed inner cytoplasm resulting in ell death after all after bombarding with expression vector (CDC and GFP). Since there is no report about more than one gene expression simultaneously in a single mitochondria, this report is very important to novel type of eukaryotic gene expression. Successful yeast cell transformation in this report implies possible eukaryotic mitochodrial transformation including plants and animals and moreover two or more gene expression which can be excellent applicable protocols to pharmaceutical field including antibody production.