The two most common mushroom species grown in Korea are pearl oyster mushroom (Pleurotus ostreatus) and king oyster mushroom (P. eryngii). In recent years, the production of king oyster mushroom greatly increased due to the automation of the cultivation facilities, and it became a major export mushroom owing to its excellent shelf life. However, the increase in the production of king oyster mushroom led to a decline in its market price; thus, necessitating the development of new mushroom species that could replace king oyster mushroom, to diversify the mushroom market for the benefit of both, the producers and the consumers. The Mushroom division at the National Institute of Horticultural & Herbal Science (NIHHS) reported the development of a new interspecific hybrid between P. ferulae and P. tuoliensis, referred to as 'Creamy.' Two parental strains KMCC00430 (Bisan2ho, P. ferulae) and KMCC00461 (P. tuoliensis) were selected based on the results of genetic resource analysis, and their monokaryons were collected. About 1,000 Mon-Mon crosses were performed and 73 of them were selected. Following repeated cultivation tests and strain analyses, we selected strain 7773, which had a bright creamy pileus and a thick straight stipe, and named it 'Creamy.' Optimum temperature for mycelial growth of Creamy was 25-30℃, and that for fruiting body growth was 16℃. The pileus, which had a brighter creamy color, was small in size with a diameter of 61.2 mm. Although it was cultivated in suboptimal conditions, such as low temperature and high CO2 concentration, Creamy was characterized by its straight and smooth stipe. Field production tests and further analyses indicated that the yield of Creamy was 5% higher than that of Baekhwang. It is expected that Creamy, the new interspecific hybrid with a bright creamy pileus and a pleasant flavor, will help create new opportunities for mushroom farmers and diversify the mushroom market.
In order to investigate developmental habit and morphology of maize tillers, time and location of tiller development. number of tillers per plant, tiller angle, height and diameter of tillers and root systems of tillers were examined under field condition for maize with tillers. Materials used were mostly from Korean local lines and a few lines from other countries were also included for comparison. The time of the first tiller development was about 18 to 20 days after emergence when planted on May in Yusong. The second tiller appeared about 4 to 5 days after the first tiller appeared. The tiller number per plant varied with lines and hybrids and ranged from two to ten. The location of tiller development was usually basal nodes of the main stem. Each tiller appeared to have its own root system. The angle between tillers and main stem was variable depending upon the maizes and the tiller angle could be classified into three categories. The height of tillers was also variable and seemed to be under genetic control. The most productive tillers were found among the Korean local derivatives.
Forage productivity of cropping systems of rye - silage corn, silage corn - oats, silage corn - rape was studied in the south-eastern part of Korea where rice black-streaked dwarf virus(RBSDV) infection of corn are severe. Rye(cv. Paldanghomil) was planted on Oct. 20 of 1986 and harvested 10 times from April 5 to May 5 at the 5-day intervals in 1987, corn (cv. Suweon 19 and Jinjuok) was planted 5 times from April 5 to May 15 at the 10-day intervals in 1987, and oats(cv. Megwiri) and rape (cv. Velox) were planted 4 times from Sept: 4 to 25 at the 7-day intervals and harvested 4 times from Nov. 10 to Dec. 10 at the 10-day intervals in 1987. Considering yield, nutrition value, and in vitro dry matter digestibility (IVDMD), forage productivity of the cropping systems was compared. As harvesting time of rye delayed, plant height, dry matter(DM) yield, percent DM, crude fiber, and digestible DM yield increased, but crude protein, crude fat, and IVDMD decreased. However, nitrogen free extract was not different among the harvesting dates. As planting date of corn delayed, RBSDV infection rate increased. but DM yield of silage decreased. However, silage yield of Jinjuok was higher, but RBSDV infection rate was lower compared with Suweon 19 at all planting dates. DM yield of oats and rape decreased as planting date delayed. However, at Sept. 4 and 11 plantings yield of oats on Nov. 10 was much lower than that of rape, but the differences in yield between two crops decreased with delayed harvesting, and yield was similar on Dec. 10. A cropping system harvesting rye around April 20 and followed by planting corn in late April was best among the rye-corn systems considering yield and nutrition value of both crops. However, among the corn-oats or corn-rape cropping systems early April planting of corn and followed by early Sept. planting of oats or rape showed best results with similar yield potential of the best rye-corn cropping system.
With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.
Journal of the Korea Institute of Building Construction
/
v.22
no.6
/
pp.651-662
/
2022
The electrochemical impedance spectroscopy(EIS) method was used to evaluate the concrete deterioration process related to chloride-induced steel corrosion with various corrosion levels(initiation, rust propagation and acceleration periods). The impressed current technique, with four total current levels of 0C, 13C, 65C and 130C, was used to accelerate steel corrosion in concrete cylinder samples with w/c ratio of 0.4, 0.5, and 0.6, immersed in a 0.5M NaCl solution. A series of EIS measurements was performed to monitor concrete deterioration during the accelerated corrosion test in this study. Some critical parameters of the equivalent circuit were obtained through the EIS analysis. It was observed that the charge transfer resistance(Rc) dropped sharply as the impressed current increased from 0C to 13C, indicating a value of approximately 10kΩcm2. However, the sensitivity of Rc significantly decreased when the impressed current was further increased from 13C to 130C after corrosion of steel had been initiated. Meanwhile, the double-layer capacitance value(Cdl) linearly increased from 50×10-6μF/cm2 to 250×10-6μF/cm2 as the impressed current in creased from 0C to 130C. The results in this study showed that monitoring Cdl is an effective measurement parameter for evaluating the progress of internal concrete damages(de-bonding between steel and concrete, micro-cracks, and surface-breaking cracks) induced by steel corrosion. The findings of this study provide a fundamental basis for developing an embedded sensor and signal interpretation method for monitoring concrete deterioration due to steel corrosion at various corrosion levels.
Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
Journal of the Computational Structural Engineering Institute of Korea
/
v.37
no.4
/
pp.225-232
/
2024
This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.
Oyster mushroom is one of the most widely cultivated and consumed mushrooms in Korea, and mechanization and automation of cultivation systems have enabled mass production. Many cultivars have been developed to replace the old ones such as 'Suhan' and 'Chunchuneutari 2 ho,' which have been cultivated for over 20 years. Among these, 'Soltari' was developed in 2015. Although it has excellent quality, its cultivation is challenging and the productivity is somewhat lower. To address these issues, the Mushroom Division at the National Institute of Horticultural and Herbal Science selected the genetic resource KMCC05165 and attempted hybridization between monokaryons from KMCC05165 and 'Soltari(KMCC04940)'. Through repeated cultivation tests and evaluation of fruiting body characteristics, the superior strain 'Po-2019-smj22' was selected and finally named 'Otari'. The optimal mycelial growth temperature of 'Otari' was between 25 and 30℃ and optimal fruiting body growth temperature was between 13 and 18℃. Mycelial growth on PDA medium was best at 25℃, and at the same temperature, mycelial growth was similar across four media: PDA, MEA, MCM, and YM. In 1,100 mL bottle cultivation, the yield was approximately 174 g, which is about 5% higher than the control cultivar 'Soltari', and the number of valid individuals was also higher at about 25. The diameter and height of the pileus were 29.8 mm and 17.6 mm, respectively, slightly smaller than 'Soltari', and the stipe was thin and long with a thickness of 12.2 mm. Additionally, the pileus' lightness index (L index) was 30.7, indicating a darker brown color compared to 'Soltari.' With excellent mycelial growth, ease of cultivation, and high yield, the new cultivar 'Otari' is expected to be widely adopted by domestic oyster mushroom farms.
Kang Young Hye;Lee Yoon Mi;Park Sun Won;Suh Chang Hae;Lim Myung Kwan
Investigative Magnetic Resonance Imaging
/
v.8
no.2
/
pp.79-85
/
2004
Purpose : To evaluate the usefulness and reproducibility of $^1H$ MRS in different 1.5 T MR machines with different coils to compare the SNR, scan time and the spectral patterns in different brain regions in normal volunteers. Materials and Methods : Localized $^1H$ MR spectroscopy ($^1H$ MRS) was performed in a total of 10 normal volunteers (age; 20-45 years) with spectral parameters adjusted by the autoprescan routine (PROBE package). In all volunteers, MRS was performed in a three times using conventional MRS (Signa Horizon) with 1 channel coil and upgraded MRS (Echospeed plus with EXCITE) with both 1 channel and 8 channel coil. Using these three different machines and coils, SNRs of the spectra in both phantom and volunteers and (pre)scan time of MRS were compared. Two regions of the human brain (basal ganglia and deep white matter) were examined and relative metabolite ratios (NAA/Cr, Cho/Cr, and mI/Cr ratios) were measured in all volunteers. For all spectra, a STEAM localization sequence with three-pulse CHESS $H_2O$ suppression was used, with the following acquisition parameters: TR=3.0/2.0 sec, TE=30 msec, TM=13.7 msec, SW=2500 Hz, SI=2048 pts, AVG : 64/128, and NEX=2/8 (Signa/Echospeed). Results : The SNR was about over $30\%$ higher in Echospeed machine and time for prescan and scan was almost same in different machines and coils. Reliable spectra were obtained on both MRS systems and there were no significant differences in spectral patterns and relative metabolite ratios in two brain regions (p>0.05). Conclusion : Both conventional and new MRI systems are highly reliable and reproducible for $^1H$ MR spectroscopic examinations in human brains and there are no significant differences in applications for $^1H$ MRS between two different MRI systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.