• Title/Summary/Keyword: 시험 시공

Search Result 1,731, Processing Time 0.03 seconds

Behavior Characteristics of Precast Concrete-Panel Retaining Wall Adhered to In-situ Ground through Large Scaled Load Test (대형재하시험을 통한 원지반 부착식 패널옹벽의 거동특성)

  • Shin, Yuncheol;Min, Kyongnam;Kim, Jinhee;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.45-53
    • /
    • 2016
  • A precast panel wall system resists against the horizontal earth pressure by increasing the shear strength of ground by reinforcement connected to the panel. The application of precast panel wall system is growing to lately minimize the earth work and environmental damage caused by large cut slope and to use the limited land effectively. The ground adhered panel wall system is the construction method that has the panel engraved with natural rock shape to improve the landscape. This system is developed to complete Top-Down method, and it is possible to have vertical cut, and to adhere to in-situ ground, improve construction ability by minimizing the ground relaxation and exclusion the trench and backfill process. In this study the field tests were performed to verify the construction ability about the vertical cut and complete Top-Down process and the construction behavior of ground adhered panel wall system was analyzed by large scale loading test and measurement results during loading test.

Experimental Study on Bearing Capacity of Ground Treated by Sand Compaction Piles (모래다짐말뚝(SCP) 시공지반의 지지력에 관한 실험적 연구)

  • 김병일;김영욱;이상익;최용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.39-47
    • /
    • 2004
  • The SCP(sand compaction pile) method which is a vertical reinforcing technique for soft ground using a sand compaction pile has received increasing popularity in Korea. Currently, there are different methods to evaluate the bearing capacity of the reinforced ground by the SCP method. However, a method that can consider the effect of the replacement ratio on the bearing capacity is not yet available. This study investigated the effect of the replacement ratio on the bearing capacity of the reinforced ground by the SCP method. The study involved laboratory experiments which were conducted on a centrifuge facility. Test conditions included various ranges of replacement ratios (20, 30, and 40%), centrifuged consolidation, and loading. From the results of the study, a method which can evaluate the bearing capacity of the reinforced ground was proposed and verified using the weighted average of the replacement ratio.

A Study on the Distribution of Residual Stress for Drilled Shaft (현장타설말뚝의 잔류응력 분포에 관한 연구)

  • Kim, Won-Cheul;Hwang, Young-Cheol;Ahn, Chang-Yoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • The distribution of shaft resistance is measured by the static load test with the strain gauge or stress gauge, so that the long-term load distribution must be considered for the pile design. However, the measurement by strain gauge generally assumes the 'zero reading', which is the reading taken at 'zero time' with 'zero' load and the residual stress, which is the negative skin friction(or the negative shaft resistance) caused by the pile construction, is neglected. Therefore, the measured value by strain gauge is different from the true load-distribution because residual stresses were neglected. In this study, the three drilled shafts were constructed, and the strain measurements were carried out just after shaft construction. As a result of this study, it is shown that the true load-distribution of drilled shaft is quite different with known load distribution and the true load-distribution of drilled shaft changed from the negative skin friction to the positive skin according to the load increment.

  • PDF

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • Recently, as large constructions on the coast increase, an application of a surface layer stabilization method which is one of the improvement methods for dredged soft clay has increased. However, there are few studies about this. The purpose of this study is clarifying characteristics of ultra-soft marine clay and hardening agent. Also, it is verifying an optimal mixture ratio of hardening agent through the laboratory tests according to designed experiments and proving by statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil in accordance with the design of experiments. Regression equations between hardening agents materials and unconfined compressive strength were derived from the tests. The applicability of regression equations were also verified by pilot tests. From the test results, it was found that hardening agent materials(cement, slag, fly-ash, inorganic salts, arwin, gypsum etc.) have some effect upon compressive strength. The optimal mixture ratio which satisfies the required compressive strength was derived from the statistical analysis. The effect of ground improvement by cements and hardening agents was confirmed through the pilot tests. This study will suggest data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

Settlement Restraint of Soft Ground by Low Slump Mortar Injection (저유동설 몰탈주입에 의한 연약지반의 침하억제 효과)

  • 천병식;여유현;정영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.53-67
    • /
    • 2001
  • In this study the pilot test of CGS as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method and effect of settlement restraint. The site far pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occur continuously because this ground is very soft. Site investigations such as SPT, DCPT and vane shear test were performed to determine the characteristics of ground improvement. Field measurements and FDM analysis were performed on purpose to find out the displacement of ground during injection works. From the results of this study, CGS method can be optimized by the control of diagram, space, depth, injection material, and injection pressure. CGS improved soft ground compositely by the bearing effect of CGS columns and reinforcement of adjacent ground. Considering that increase of N value is about 2.1, CGS can be considered as an effective method to increase the bearing capacity as well as to stop the settlement of soft ground. It is also expected to be economic and effective in improvement of ground when it is used in applicable sites.

  • PDF

A Field Study on the Constructability and Performance Evaluation of Waveform Micropile (현장시험을 통한 파형 마이크로파일의 시공성 및 거동 평가)

  • Jang, Young-Eun;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.67-79
    • /
    • 2016
  • Waveform micropile is an advanced construction method that combined the concept of conventional micropile with jet grouting method. This new form of micropile was developed to improve frictional resistance, which consequently leads to achieving higher bearing capacity and cost efficiency. Two field tests were conducted to examine the field applicability as well as to verify the effects of bearing capacity enhancement. In particular, waveform micropile construction using jet grouting method was performed to evaluate the viability of waveform micropile installation. After testing, the surrounding ground was excavated to check the accomplishment on the shape of waveform micropile. The result showed that waveform micropile can be installed by adjusting the grouting time and pressure. In the loading tests, waveform micropile's bearing capacity increased by 1.4 to 2.3 times depending on their shapes when compared with conventional micropile. Overall results clearly demonstrated that waveform micropile is an enhanced construction method that can improve bearing capacity.

A Study on the Formulation Selection of Self Leveling Floor Mortar with Fluidity and Early Strength Improvements (유동성 및 조기강도 확보가 가능한 자기수평 모르타르 배합선정에 관한 연구)

  • Ryu, Hwa-Sung;Kim, Deuck-Mo;Kwon, Seung-Jun;Park, Won-Jun;Shin, Sang-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • The purpose of this study is to develop a floor mortar construction technique which has high strength and inherent mechanical properties and does not cause cracks due to shrinkage after construction. It has been demonstrated that compressive strength, bending strength, flow with floor mortar, and crack reduction performance. As a result, it was confirmed that the developed floor mortar had the same or better performance comparing with the existing foreign products. The results of this experiment can be used as a validation material for high performance and high flowable mortar construction technology with excellent material performance, economical efficiency and construction ability by securing the required performance as floor mortar and selecting the optimal formulation.

Research on Practical Rubblization in PCC Pavements Equipment Development and Test Construction (원위치파쇄기층화 공법의 실용화를 위한 장비개발 및 시험시공)

  • Lee, Seung Woo;Han, Seung Hwan;Ko, Suck Bum;Kim, Ji Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.81-87
    • /
    • 2006
  • The rubblization technique is breaking the aged concrete pavement slab into rubblized concrete aggregate, and use it as an base material at its original position, then builds overlay above the rubblized base. This method has been successively used in USA due to the advantage of good constructibility, cost-effectiveness as well as the capability of preventing of reflection cracks. However, constructibility and economic performance of rubblization on typical Korean concrete pavements needed to be investigate since to typical Korean concrete pavements have thick slab, as well include lean concrete subbase course. Multi-head type breaker suitable for Korean condition was designed and developed. This multi-head type breaker was designed to rubblize old concrete to the suggested optimum rubblized-depth and rubblized-concrete-aggregate size to prevent reflection crack and maintain high bearing capacity. This machine was used for the test of rubblization of old concrete pavement on a non-use old concrete and a in-serviced road. In these two tests, engineering properties of rubblized base and constructability and cost were investigated. In both tests, the old concrete rubblized to targeted size and depth, and high-level bearing capacity was achieved. Also, superior constructability and lower cost compared with traditional reconstruction was examined.

Application of the Evaluation System of Rock Mass in a Mountain Tunnel Constructed by NATM (NATM 시공 산악터널에서의 암반평가시스템 적용 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.297-307
    • /
    • 1995
  • 터널은 긴 선상구조물로서 사정조사결과와 다른 지질조건이 나타날 수 있으므로, 안전하고 합리적인 터널공사를 위해서는 시공중 지질조건에 적합한 지보설계를 실시하는 것이 필수적이다. 이를 위해서는 시공중 터널주변자반에 대한 정량적이고 공학적인 평가가 매우 중요하다. 그러나 시공중 암반을 평가하는 것은 매우 어렵고 조사자의 경험과 지식의 차이에 의해 평가정도가 크게 달라져 그 불합리성이 심화되고 있는 실정으로 터널주변암반에 대한 합리적인 평가방법이 절실히 요구되고 있다. 본 연구에서는 터널화상처리, GeoCAD, 역해석으로 구성된 평기시스템을 개발하였다. 본 시스템은 터널막장에서의 조사.시험 및 화상처리기법을 통하여 암반분류.평가를 실시하고, 터널주변 지반구조 및 굴착/지보과정의 3차원 모델링을 통하여 전방지질을 예측가능하게 하며, 터널계측자료의 역해석을 통하여 터널주변 지반의 물성을 정량적으로 평가할 수 있는 체계적이고 종합적인 평가시스템이다. 또한 이를 NATM 공법으로 시공되는 터널현장에 적용하므로써 본 시스템의 현장적용성을 검증하였으며, 이를 통해 적절한 지보공을 시공하여 터널의 안정성을 확보하고 합리적인 시공관리를 달성할 수 있었다.

  • PDF

Optic Sensor-based Field Test of a PSC Bridge supported by Concrete Filled FRP Strut (광센서를 이용한 콘크리트 충진 FRP 스트럿 보강 PSC교량의 현장시험)

  • Lee, Chang-Sun;Kang, Dong-Hoon;Chung, Won-Seok;An, Zu-Og
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.209-212
    • /
    • 2009
  • 최근 국내에서 적용되고 있는 콘크리트 충진 FRP 스트럿은 시공성 및 경제성 면에서 매우 뛰어난 공법으로 주목 받고 있으나 그 설계 및 시공에 있어 아직도 불확실한 요소를 내포하고 있다. 특히 최근에는 PSC 박스 거더교에서 교폭을 늘리고 자중을 줄이기 위해 콘크리트 충진 FRP 스트럿을 설치하는 공법이 다수 시공되고 있다. 본 연구에서는 이러한 대상교량에 대해 현장시험을 실시하여 교량시스템에서의 콘크리트 충진 FRP 스트럿 거동을 분석하는데 목적이 있다. 특히 전자기파 간섭에 면역이 우수한 광센서인 FBG 센서를 기반으로 하는 계측을 실시하여 잡음이 없는 우수한 결과를 성공적으로 획득하였다. 그 결과 FRP 스트럿은 하중 재하 위치와 속도에 관계없이 압축응력 상태에 존재하고 있으며 횡방향 거동에 지배되고 있음을 확인하였다.

  • PDF