Subsequence matching is an operation that finds subsequences whose changing patterns are similar to a given query sequence from time-series databases. This paper points out the performance bottleneck in subsequence matching, and then proposes an effective method that improves the performance of entire subsequence matching significantly by resolving the performance bottleneck. First, we analyze the disk access and CPU processing times required during the index searching and post processing steps through preliminary experiments. Based on their results, we show that the post processing step is the main performance bottleneck in subsequence matching, and them claim that its optimization is a crucial issue overlooked in previous approaches. In order to resolve the performance bottleneck, we propose a simple but quite effective method that processes the post processing step in the optimal way. By rearranging the order of candidate subsequences to be compared with a query sequence, our method completely eliminates the redundancy of disk accesses and CPU processing occurred in the post processing step. We formally prove that our method is optimal and also does not incur any false dismissal. We show the effectiveness of our method by extensive experiments. The results show that our method achieves significant speed-up in the post processing step 3.91 to 9.42 times when using a data set of real-world stock sequences and 4.97 to 5.61 times when using data sets of a large volume of synthetic sequences. Also, the results show that our method reduces the weight of the post processing step in entire subsequence matching from about 90% to less than 70%. This implies that our method successfully resolves th performance bottleneck in subsequence matching. As a result, our method provides excellent performance in entire subsequence matching. The experimental results reveal that it is 3.05 to 5.60 times faster when using a data set of real-world stock sequences and 3.68 to 4.21 times faster when using data sets of a large volume of synthetic sequences compared with the previous one.
In this paper, we present the concept of generalization in constructing windows for subsequence matching and propose a new subsequence matching method. GeneralMatch, based on the generalization. The earlier work of Faloutsos et al.(FRM in short) causes a lot of false alarms due to lack of the point-filtering effect. DualMatch, which has been proposed by the authors, improves performance significantly over FRM by exploiting the point filtering effect, but it has the problem of having a smaller maximum window size (half that FRM) given the minimum query length. GeneralMatch, an improvement of DualMatch, offers advantages of both methods: it can use large windows like FRM and, at the same time, can exploit the point-filtering effect like DualMatch. GeneralMatch divides data sequences into J-sliding windows (generalized sliding windows) and the query sequence into J-disjoint windows (generalized disjoint windows). We formally prove that our GeneralMatch is correct, i.e., it incurs no false dismissal. We also prove that, given the minimum query length, there is a maximum bound of the window size to guarantee correctness of GeneralMatch. We then propose a method of determining the value of J that minimizes the number of page accesses, Experimental results for real stock data show that, for low selectivities ($10^{-6}~10^{-4}$), GeneralMatch improves performance by 114% over DualMatch and by 998% iver FRM on the average; for high selectivities ($10^{-6}~10^{-4}$), by 46% over DualMatch and by 65% over FRM on the average.
Kim, Nak-Min;Jeong, Byeong-Soo;Ahmed, Chowdhury Farhan
Journal of KIISE:Databases
/
v.37
no.5
/
pp.221-227
/
2010
Web access sequence mining can discover the frequently accessed web pages pursued by users. Utility-based web access sequence mining handles non-binary occurrences of web pages and extracts more useful knowledge from web logs. However, the existing utility-based web access sequence mining approach considers web access sequences from the very beginning of web logs and therefore it is not suitable for mining data streams where the volume of data is huge and unbounded. At the same time, it cannot find the recent change of knowledge in data streams adaptively. The existing approach has many other limitations such as considering only forward references of web access sequences, suffers in the level-wise candidate generation-and-test methodology, needs several database scans, etc. In this paper, we propose a new approach for high utility web access sequence mining over data streams with a sliding window method. Our approach can not only handle large-scale data but also efficiently discover the recently generated information from data streams. Moreover, it can solve the other limitations of the existing algorithm over data streams. Extensive performance analyses show that our approach is very efficient and outperforms the existing algorithm.
A deep neural network composed of encoders and decoders, such as U-Net, used for speech enhancement, concatenates the encoder to the decoder through skip-connection. Skip-connection helps reconstruct the enhanced spectrum and complement the lost information. The features of the encoder and the decoder connected by the skip-connection are incompatible with each other. In this paper, for complex-valued spectrum based speech enhancement, Self-Attention (SA) method is applied to skip-connection to transform the feature of encoder to be compatible with the features of decoder. SA is a technique in which when generating an output sequence in a sequence-to-sequence tasks the weighted average of input is used to put attention on subsets of input, showing that noise can be effectively eliminated by being applied in speech enhancement. The three models using encoder and decoder features to apply SA to skip-connection are studied. As experimental results using TIMIT database, the proposed methods show improvements in all evaluation metrics compared to the Deep Complex U-Net (DCUNET) with skip-connection only.
Proceedings of the Korean Information Science Society Conference
/
2010.06a
/
pp.38-39
/
2010
수도권 대중교통 이용자는 2004년 서울시의 대중교통 체계 개편에 따라 교통 카드를 사용하여 버스와 지하철을 이용하게 되었다. 교통 카드를 사용하는 각 승객의 승차와 하차에 관한 데이터가 하나의 트랜잭션으로 구성되고, 하루 천만 건 이상의 트랜잭션들로 구성된 대용량 교통카드 트랜잭션 데이터베이스가 만들어지고 있다. 대중교통을 이용하는 승객들의 승차와 하차에 관한 여러 정보를 담고 있는 교통카드 트랜잭션 데이터베이스에서 유용한 패턴이나 정보를 탐사해내는 연구가 계속 진행되고 있다. 이런 연구 결과는 수도권 대중교통 정책을 입안하는데 중요한 기초 자료가 되고 수도권 승객들에게 대중교통을 보다 잘 이용할 수 있는 정보로 제공된다. 교통카드 이용률은 2006년 79.5%, 2007년 80.3%, 2008년 81.6%로 점차적으로 증가하고 있다. 대용량의 교통카드 트랜잭션 데이터베이스에 대한 연구를 살펴보면 하루 동안의 교통카드 트랜잭션 데이터베이스에서 순차 패턴을 탐사하는 알고리즘을 연구하였고[1], 승객들의 통행 패턴에 대한 분석연구를 확장하여 일 년에 하루씩 2004년에서 2006년까지 3일간의 교통카드 트랜잭션 데이터베이스로부터 승객 시퀀스의 평균 정류장 개수와 환승 횟수 등을 연도별로 비교하였다[2]. 수도권 지하철 시스템의 특성에 관한 연구로는 네트워크 구조 분석이 있었고[3], 승객의 기종점 통행 행렬(Origin-Destination trip matrix)에 의한 승객 흐름의 분포가 멱함수 법칙(power law)임을 보여주는 연구가 있었고[4], 지하철 교통망에서 모든 링크상의 승객들의 흐름을 찾아내는 연구가 있었다[5]. 본 논문에서는 교통카드 트랜잭션 데이터베이스에서 지하철 승객들의 통근 패턴을 탐사해내는 방법을 연구하였다. 수도권 지하철 네트워크에 대한 정보를 입력하고 하루치의 교통카드 트랜잭션 데이터베이스에 연구된 방법을 적용하여 8가지 통근 패턴들을 탐사해내고 분석하였다. 탐사된 패턴들 중에서 많은 승객들이 지지하는 출퇴근 패턴에 대해서는 시간대별로 승객수를 그래프로 보여주었다.
본 논문에서는 영상 시퀀스 상에서 물체의 가려짐을 고려하여 상대적인 깊이 순서에 의해 정렬되는 계층을 분리하기 위한 새로운 움직임 분할 방법을 제안한다. 블록을 기반으로 한 움직임 추정 및 클러스터링 과정을 통하여 각 계층에 대한 블록영역을 구하고, 이 블록영역에 대하여 윤곽선 추출을 이용하여 각 계층에 대한 정확한 객체를 분리할 수 있다. 이러한 움직임 분할방법을 통한 동영상의 계층적인 표현은 영상에서 원하지 않는 물체, 전경, 배경의 제거나 기존의 영상을 이용한 새로운 영상의 합성에 이용될 수 있으며, 분할을 통해 얻어진 객체는 영상 압축, 영상 합성 등을 위한 데이터베이스에 저장되어 응용될 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.178-180
/
2001
모양 기반 검색은 주어진 질의 시퀸스의 요소 값에 상관없이, 모양이 유사한 시퀸스 혹은 부분시퀸스를 찾는 연산이다. 본 논문에서는 시프트, 스케일링, 타임 워핑 등 동일 모양 변환의 다양한 조합을 지원할 수 있는 새로운 모양 기반유사 검색 모델을 제안하고, 효과적인 유사 부분 시퀸스 검색을 위한 인덱싱과 질의 처리 방법을 제안한다. 또한 실세계의 증권데이터를 이용한 다양한 실험 결과에 의하여, 본 방식이 질의 시퀸스와 유사한 모양의 모든 서브시퀸스를 성공적으로 찾는 것은 물론 순차검색 방법과 비교하여 매우 빠른 검색 효율을 가짐을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.498-499
/
2023
비속어 탐지 기법으로 주로 사용되는 비속어 데이터베이스 활용 방식 혹은 문장 자체를 혐오, 비혐오로 분류하는 방식은 변형된 비속어 탐지에 어려움이 있다. 본 논문에서는 자연어 처리 태스크 중 하나인 개체명 인식 방법에서 착안하여 시퀀스 레이블링 기반의 비속어 탐지 방법을 제안한다. 한국어 악성 댓글 중 비속어 부분에 대해 레이블링 된 데이터셋을 구축하여 실험을 진행하고, 이를 통해 F1-Score 약 0.88 의 결과를 보인다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.4-6
/
2002
네트워크의 광역화와 새로운 공격 유형의 발생으로 침입 탐지 시스템에서 새로운 시퀀스의 추가나 침입탐지 모델 구축의 수동적인 접근부분이 문제가 되고 있다. 특히 기존의 침입탐지 시스템들은 대량의 네트워크 하부구조를 가진 네트워크 정보를 수집 및 분석하는데 있어 각각 전담 시스템들이 담당하고 있다. 따라서 침입탐지 시스템에서 증가하는 많은 양의 감사데이터를 분석하여 다양한 공격 유형들에 대해서 능동적으로 대처할 수 있도록 하는 것이 필요하다. 최근, 침입 탐지 시스템에 데이터 마이닝 기법을 적용하여 능동적인 침입탐지시스템을 구축하고자 하는 연구들이 활발히 이루어지고 있다. 이 논문에서는 대량의 감사 데이터를 정확하고 효율적으로 분석하기 위한 마이닝 시스템을 설계하고 구현한다. 감사데이터는 트랜잭션데이터베이스와는 다른 특성을 가지는 데이터이므로 이를 고려한 마이닝 시스템을 설계하였다. 구현된 마이닝 시스템은 연관규칙 기법을 이용하여 감사데이터 속성간의 연관성을 탐사하고, 빈발 에피소드 기법을 적용하여 주어진 시간 내에서 상호 연관성 있게 발생한 이벤트들을 모음으로써 연속적인 시간간격 내에서 빈번하게 발생하는 사건들의 발견과 알려진 사건에서 시퀀스의 행동을 예측하거나 기술할 수 있는 규칙을 생성한 수 있다. 감사데이터의 마이닝 결과 생성된 규칙들은 능동적인 보안정책을 구축하는데 활용필 수 있다. 또한 데이터양의 감소로 침입 탐지시간을 최소화하는데도 기여한 것이다.
The RFID group proof is an extension of the yoking proof proving that multiple tags are scanned by a reader simultaneously. Existing group proof schemes provide only delayed tag loss detection which detects loss of tag response in a verification phase. However, delayed tag loss detection is not suitable for real-time applications where tag loss must be detected immediately. In this study, I propose a tag response loss detection scheme which detects loss of tag response in the proof generation process quickly. In the proposed scheme, the tag responds with the sequence number assigned to the tag group, and the reader detects the loss of the tag response through the sequence number. Through an experiment for indistinguishability, I show that the sequence number is secure against an analyzing message attack to distinguish between specific tags and tag groups. In terms of efficiency, the proposed scheme requires fewer transmissions and database operations than existing techniques to determine which tags response is lost.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.