• Title/Summary/Keyword: 시스템 식별기법

Search Result 533, Processing Time 0.04 seconds

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

A Study on the Improvement of Service Quality in Medical Tourism by Combining Service Blueprint and AHP (서비스 청사진과 AHP의 결합에 의한 의료관광서비스 개선방안에 관한 연구)

  • Hyun, Min-Cheol;Cho, Boo-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1895-1904
    • /
    • 2014
  • This study explores the way to improve service quality with the application of Service Blueprint and Analytic Hierarchy Process (hereafter, "AHP") in medical tourism. Service Blueprint has been widely accepted to identify the possible fail points in service delivery system, and AHP analysis has been recognized as beneficial method to rate relative importance in multi-criteria decision making process. We try to understand possible pitfalls to enhance Chinese medical tourists, and propose the priority in the resolution process. In the first step, we reviewed the extant literatures about medical tourism of South Korea, and built initial Service Blueprint. Experts who experienced service delivery process towards Chinese patients participated to review the proposed Service Blueprint in the second step. Thirdly, after extracting the possible fail points from revised Service Blueprint, we asked experts to guess the relative importance of Chinese patient by AHP methodology. Four domains (Arrival and Welcoming, Hospitalization, Process before, operations, and after surgery, Recovery and discharge) were emerged with detail criteria. Results show that operations and treatment is the most important domain not to lose Chinese patient's loyalty with following hospitalization process domain. Also, we suggest the priority among sixteen criteria to prevent service failure.

Collaboration and Node Migration Method of Multi-Agent Using Metadata of Naming-Agent (네이밍 에이전트의 메타데이터를 이용한 멀티 에이전트의 협력 및 노드 이주 기법)

  • Kim, Kwang-Jong;Lee, Yon-Sik
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.105-114
    • /
    • 2004
  • In this paper, we propose a collaboration method of diverse agents each others in multi-agent model and describe a node migration algorithm of Mobile-Agent (MA) using by the metadata of Naming-Agent (NA). Collaboration work of multi-agent assures stability of agent system and provides reliability of information retrieval on the distributed environment. NA, an important part of multi-agent, identifies each agents and series the unique name of each agents, and each agent references the specified object using by its name. Also, NA integrates and manages naming service by agents classification such as Client-Push-Agent (CPA), Server-Push-Agent (SPA), and System-Monitoring-Agent (SMA) based on its characteristic. And, NA provides the location list of mobile nodes to specified MA. Therefore, when MA does move through the nodes, it is needed to improve the efficiency of node migration by specified priority according to hit_count, hit_ratio, node processing and network traffic time. Therefore, in this paper, for the integrated naming service, we design Naming Agent and show the structure of metadata which constructed with fields such as hit_count, hit_ratio, total_count of documents, and so on. And, this paper presents the flow of creation and updating of metadata and the method of node migration with hit_count through the collaboration of multi-agent.

Tag Trajectory Generation Scheme for RFID Tag Tracing in Ubiquitous Computing (유비쿼터스 컴퓨팅에서 RFID 태그 추적을 위한 태그 궤적 생성 기법)

  • Kim, Jong-Wan;Oh, Duk-Shin;Kim, Kee-Cheon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.1-10
    • /
    • 2009
  • One of major purposes of a RFID system is to track moving objects using tags attached to the objects. Because a tagged object has both location and time information expressed as the location of the reader, we can index the trajectory of the object like existing spatiotemporal objects. More efficient tracking may be possible if a spatiotemporal trajectory can be formed of a tag, but there has not been much research on tag trajectory indexes. A characteristic that distinguishes tags from existing spatiotemporal objects is that a tag creates a separate trajectory in each reader by entering and then leaving the reader. As a result, there is a trajectory interruption interval between readers, in which the tag cannot be located, and this makes it difficult to track the tag. In addition, the point tags that only enter and don't leave readers do not create trajectories, so cannot be tracked. To solve this problem, we propose a tag trajectory index called TR-tree (tag trajectory R-tree in RFID system) that can track a tag by combining separate trajectories among readers into one trajectory. The results show that TR-tree, which overcomes the trajectory interruption superior performance than TPIR-tree and R-tree.

A Study on Construction of Collision Prevention Algorithm for Small Vessel Using WAVE Communication System (WAVE 통신을 활용한 소형선박의 충돌예방 알고리즘 구축에 관한 연구)

  • Lee, Myoung-ki;Park, Young-Soo;Kang, Won-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In December 2017, many collision accidents of small vessels, such as those between oil refineries and fishing boats, occurred near Yeonghung-do in Incheon. In order to prevent marine casualties from small vessels, the government is striving to improve the safety capabilities of ship operators by strengthening education and improving the working environment. They are providing education and refining training regulations for fishermen operating vessels under 5 tons. However, the situation includes certain vulnerabilities. In this study, we propose a collision prevention algorithm for small vessels using the Wireless Access in Vehicular Environments (WAVE) communication system, which is a new communication technique to prevent collisions with small ships. The collision avoidance algorithm used is based on DCPA/TCPA. Research analyses, simulation experiments and questionnaires have been conducted to define the criteria of DCPA/TCPA. As a result, the standard for DCPA was $8(L_a+L_b)$ and for TCPA was 2.5 min. Three different accident cases were selected, and this algorithm was applied to confirm alarm responses at certain times. This algorithm can provide information to the operators of small ships in advance to help them recognize potential collision situations.

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction (해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구)

  • Dae-yaoung Eeom;Bang-hee Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.100-103
    • /
    • 2023
  • Recently, development of maritime autonomoust surface ships and eco-friendly ships, production and evaluation research considering various marine environments is needed in the field of optimal routes as the demand for accurate and detailed real-time marine environment prediction information expands. An algorithm that can calculate the optimal route while reducing the risk of the marine environment and uncertainty in energy consumption in smart ships was developed in 2 stages. In the first stage, a profile was created by combining marine environmental information with ship location and status information within the Automatic Ship Identification System(AIS). In the second stage, a model was developed that could define the marine environment energy map using the configured profile results, A regression equation was generated by applying Random Forest among machine learning techniques to reflect about 600,000 data. The Random Forest coefficient of determination (R2) was 0.89, showing very high reliability. The Dijikstra shortest path algorithm was applied to the marine environment prediction at June 1 to 3, 2021, and to calculate the optimal safety route and express it on the map. The route calculated by the random forest regression model was streamlined, and the route was derived considering the state of the marine environment prediction information. The concept of route calculation based on real-time marine environment prediction information in this study is expected to be able to calculate a realistic and safe route that reflects the movement tendency of ships, and to be expanded to a range of economic, safety, and eco-friendliness evaluation models in the future.

  • PDF

A Study on the Drug Classification Using Machine Learning Techniques (머신러닝 기법을 이용한 약물 분류 방법 연구)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.8-16
    • /
    • 2024
  • This paper shows the system of drug classification, the goal of this is to foretell the apt drug for the patients based on their demographic and physiological traits. The dataset consists of various attributes like Age, Sex, BP (Blood Pressure), Cholesterol Level, and Na_to_K (Sodium to Potassium ratio), with the objective to determine the kind of drug being given. The models used in this paper are K-Nearest Neighbors (KNN), Logistic Regression and Random Forest. Further to fine-tune hyper parameters using 5-fold cross-validation, GridSearchCV was used and each model was trained and tested on the dataset. To assess the performance of each model both with and without hyper parameter tuning evaluation metrics like accuracy, confusion matrices, and classification reports were used and the accuracy of the models without GridSearchCV was 0.7, 0.875, 0.975 and with GridSearchCV was 0.75, 1.0, 0.975. According to GridSearchCV Logistic Regression is the most suitable model for drug classification among the three-model used followed by the K-Nearest Neighbors. Also, Na_to_K is an essential feature in predicting the outcome.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.