• Title/Summary/Keyword: 시스템온칩

Search Result 15, Processing Time 0.022 seconds

Design of an Embedded System Using SPARTAN-3E (SPARTAN-3E를 사용한 임베디드 시스템 설계)

  • Moon, Sang-Ook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.768-770
    • /
    • 2010
  • Recent semiconductor design technology has been substantially developed that we can design a micro-system on a chip as well as implementing an application specific IC in an FPGA. SPARTAN-3E developed by Xilinx is equipped with an FPGA that holds as much as 500 thousand transistors connected with MicroBlaze softcore microprocessor bus system. In this paper, we discuss a method of implementing an embedded system using the SPARTAN-3E. We also explain the peripherals and the bus protocols and the expandability of this kind of embeded systems.

  • PDF

Design of Crossbar Switch On-chip Bus for Performance Improvement of SoC (SoC의 성능 향상을 위한 크로스바 스위치 온칩 버스 설계)

  • Heo, Jung-Burn;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.684-690
    • /
    • 2010
  • Most of the existing SoCs have shared bus architecture which always has a bottleneck state. The more IPs are in an SOC, the less performance it is of the SOC, Therefore, its performance is effected by the entire communication rather than CPU speed. In this paper, we propose cross-bar switch bus architecture for the reduction of the bottleneck state and the improvement of the performance. The cross-bar switch bus supports up to 8 masters and 16 slaves and parallel communication with architecture of multiple channel bus. Each slave has an arbiter which stores priority information about masters. So, it prevents only one master occupying one slave and supports efficient communication. We compared WISHBONE on-chip shared bus architecture with crossbar switch bus architecture of the SOC platform, which consists of an OpenRISC processor, a VGA/LCD controller, an AC97 controller, a debug interface, a memory interface, and the performance improved by 26.58% than the previous shared bus.

Hardware Design for JBIG2 Huffman Coder (JBIG2 허프만 부호화기의 하드웨어 설계)

  • Park, Kyung-Jun;Ko, Hyung-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.200-208
    • /
    • 2009
  • JBIG2, as the next generation standard for binary image compression, must be designed in hardware modules for the JBIG2 FAX to be implemented in an embedded equipment. This paper proposes a hardware module of the high-speed Huffman coder for JBIG2. The Huffman coder of JBIG2 uses selectively 15 Huffman tables. As the Huffman coder is designed to use minimal data and have an efficient memory usage, high speed processing is possible. The designed Huffman coder is ported to Virtex-4 FPGA and co-operating with a software modules on the embedded development board using Microblaze core. The designed IP was successfully verified using the simulation function test and hardware-software co-operating test. Experimental results shows the processing time is 10 times faster than that of software only on embedded system, because of hardware design using an efficient memory usage.

  • PDF

Stable Power Plan Technique for Implementing SoC (SoC 구현을 위한 안정적인 Power Plan 기법)

  • Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2731-2740
    • /
    • 2012
  • ASIC(application specific integrated circuit) process is a set of various technologies for fabricating a chip. Generally there have been many researches for RTL design, synthesis, floor plan & routing, low power scheme, clock tree synthesis, and testability which are widely researched in recent. In this paper we propose a new methodology of power strap routing in basis of design experience and experiment. First the power strap for vertical VDD and VSS and horizontal VDD and VSS is routed, and then after the problems which are generated in this process are analyzed, we propose a new process for resolving them. For this, the strap guide is inserted to protect the unnecessary strap routing and dumped for next steps. Next the unnecessary power straps which are generated the first inserting process are removed, and the pre-routing is performed for the macro cells. Finally the resultant power straps are routed using the dumped routing guide. Through the proposed process we identified the efficient and stable route of the power straps.

Modeling and Analysis of Power Consumed by System Bus for Multimedia SoC (멀티미디어 SoC용 시스템 버스의 소비 전력 모델링 및 해석)

  • Ryu, Che-Cheon;Lee, Je-Hoon;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.84-93
    • /
    • 2007
  • This paper presents a methodology that accelerates estimating the system-level power consumption for on-chip bus of SoC platforms. The proposed power modeling can estimate the power consumption according to the change of a target SoC system. The proposed model comprises two parts: the one is power estimation of bus logics reflecting the architecture of the bus such as the number of bus layers, the other is to estimate the power consumed by the bus lines during data transmission. We designed the target multimedia SoC system, MPEG encoder as an example and evaluated power consumption using this model. The simulation result shows that the accuracy of the proposed model is over 92%. Thus, the proposed power model can be used to design of a high-performance/low-power multimedia SoC.