• Title/Summary/Keyword: 시변 잡음

Search Result 80, Processing Time 0.019 seconds

Robust Kalman based time varying spectral estimation in bursty noise environment (충격성 잡음환경에 강인한 Kanlman 시변 주파수 추정기법)

  • 김한수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.29-32
    • /
    • 1996
  • 본 논문에서는 시변 주파수를 추정하기 위한 방법으로 기존의 시간 가중 칼만 추정기법에 변형된 Huber함수를 적용하여 충격성 잡음환경 하에서도 강인한 칼만추정기법을 제안하였다. 기존의 시간 가중 칼만 추정기법은 오차가 정규분포를 가진다고 가정된 상태에서는 적합한 파라메타 추정을 할 수 있지만 충격성 잡음이 존재하는 경우에는 수렴속도나 시변적응능력에서의 성능저하가 나타난다. 제안된 알고리듬은 영향함수 측면에서 충격성 잡음에 의해 생기는 오차의 크기를 제한함으로써 기포나 인위적인 충격성 잡음환경 하에서도 시변 주파수 추정을 할 수 있으며 알고리듬의 타당성은 모의실험을 통해 보였다.

  • PDF

Analytical Proof of Conservation of Power in the LTV Phase Noise Theory for Noisy Oscillators (선형시변 발진기 위상잡음 이론의 전력 보존성의 증명)

  • Jeon, Man-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.855-859
    • /
    • 2012
  • This study derives a generalized PSD formula in the LTV phase noise theory for noisy oscillators. The derived formula analytically proves that the LTV phase noise theory can predict the conservation of the power in the noisy oscillation signals. Additionally, the derived formula allows the theory to account for the behavior of the power spectrum over the entire frequency range including the regions around higher harmonics as well as fundamental frequency.

Kalman based time-varying Spectral estimation using Variable Forgetting Factor robust to impulsive noise (충격성 잡음에 강인한 가변 망각인자 칼만 시변 주파수 추정기법)

  • 김한수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.165-168
    • /
    • 1998
  • 본 논문에서는 충격성 잡음에 강인하기 위한 시변 주파수 추정 기법을 제안하였다 충격성 잡음에 강인하기 위해서는 충격성 잡음에 의한 추정 변수의 동요를 제한하고 추정된 오차가 향후 추정시 영향을 미치는 오차의 전파현상을 제한하여야 한다. 충격성 잡음에 의한 추정오차의 전파를 제한하기 위해서는 망각인자의 도입이 필요함을 증명하였고 보다 효과적으로 사용하기 위해서 가변 망각인자를 도입하였다. 가변 망각인자의 도입으로 충격성 잡음에 의한 오차의 전파를 선택적으로 제한할 수 있으며 충격성 잡음에 의한 추정계수의 변동은 영향함수 측면에서 Huber함수를 이용하여 제한하였다. 제안된 알고리듬은 Huber함수와 가변망각인자의 도입으로 충격성 잡음에 의해 생기는 오차의 크기와 오차의 영향이 전파되는 것을 적응적으로 제한하기 때문에 모의실험을 통해 기존의 칼만 알고리듬보다 나은 성능을 보임을 알 수 있었다.

  • PDF

Speech Recognition in Time-varying Noisy Environments using the Histogram Technique (히스토그램 처리방법을 이용한 시변 잡음환경에서의 음성인식)

  • 권영욱;김형순
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.47-51
    • /
    • 1998
  • 잡음 환경에서의 음성인식을 위해서는 일반적으로 전처리 과정에서 잡음의 스펙트 럼을 잘 추정할 필요가 있다. 본 논문에서는 시변잡음 환경에서 히스토그램 처리방법에 의 해 잡음의 스펙트럼을 추정하고 이를 제거하는 방법으로 스펙트럼 차감법을 사용하였다. 히 스토그램 처리방법은 음성/비음성 구간의 구분을 할 필요가 없으며 서서히 변화하는 잡음의 스펙트럼도 추정할 수 있다는 점에서 기존 방식에 비해 장점을 지닌다. 다양한 SNR 조건하 에서 시간에 따라 에너지, 그리고 주파수가 변화하는 유색 가우시안 잡음을 부가시킨 음성 에 대해, 화자독립 고립단어 인식실험을 수행하였다. 실험결과, 히스토그램 처리방법에 기반 을 둔 스펙트럼 차감법을 적용할 경우가 기존의 잡음 스펙트럼 추정방법에 비해 인식성능이 우수하였다.

  • PDF

Distance Measure for Biased Probability Density Functions and Related Equalizer Algorithms for Non-Gaussian Noise (편이 확률밀도함수 사이의 거리측정 기준과 비 가우시안 잡음 환경을 위한 등화 알고리듬)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1038-1042
    • /
    • 2012
  • In this paper, a new distance measure for biased PDFs is proposed and a related equalizer algorithm is also derived for supervised adaptive equalization for multipath channels with impulsive and time-varying DC bias noise. From the simulation results in the non-Gaussian noise environments, the proposed algorithm has proven not only robust to impulsive noise but also to have the capability of cancelling time-varying DC bias noise effectively.

Speech Enhancement using the Neural Network Filter (신경망필터를 이용한 음질향상)

  • 김종우;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

Interference Cancellation System using Adaptive Feedback Method (적응성 궤환방식을 이용한 간섭잡음제거기)

  • 김선진;이제영;이종철;김종헌;이병제;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.183-191
    • /
    • 2003
  • In this paper, the interference cancellation system, which is used to cancel the feedback signal In the wireless communication system with the same frequency, is studied. The time-varying feedback signal generated from transmitter antenna to receiver antenna reduces the performance of the receiver system. The interference cancellation system using adaptive feedback method(AF-ICS) is suggested to prevent the oscillation of the receiver system and maintain the maximum output power of the power amplifier by the reduction of time-varying feedback signal.

Designing of non-linear maneuvering target tracking method using PHP (PHP 개념을 이용한 비선형 기동표적 추적기법 설계)

  • Son, Hyeon-Seung;Ju, Yeong-Hun;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.297-300
    • /
    • 2006
  • 본 논문에서는 비선형 기동표적의 추적에 대한 새로운 접근 방식을 소개한다. 이 논문에서는 표적의 가속도를 시변 변수인 표적의 추가적인 잡음으로 두고 각각의 가속도 간격의 정도에 따라 얻어지는 모든 잡음에 대한 변수에 의해 각각의 하부 모델들을 특성화시켰다. 표적의 기동중에 나타나는 가속도를 효과적으로 다루기 위하여, 잡음의 크기가 급격히 증가할 경우 증가분을 가속도로 인식하여 기동표적 관계식에 이용하였다. 또한 모르는 가속도에 따른 시변 변수를 적응적으로 어립잡기는 어렵기 때문에 정밀한 계산을 위하여 퍼지 뉴럴 네트워크와 적응 상호작용 다중모델 기법을 이용하였다. 퍼지 뉴럴 네트워크의 동정을 위해서는 오차 역전파 학습법을 사용하였다. 그리고 제안된 알고리즘의 수행 가능성을 보여주기 위하여 몇 가지 예를 제시하였다.

  • PDF

Design of a neural network based adaptive noise canceler for broadband noise rejection (광대역 잡음제거를 위한 신경망 적응잡음제거기 설계)

  • 곽우혁;최한고
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.30-36
    • /
    • 2002
  • This paper describes a nonlinear adaptive noise canceler(ANC) using neural networks(NN) based on filter to make up for the drawback of the conventional ANC with the linear adaptive filter. The proposed ANC was tested its noise rejection performance using broadband time-varying noise signal and compared with the ANC of TDL linear filter. Experimental results show that in cases of nonlinear correlations between the noise of primary input and reference input, the neural network based ANC outperforms the linear ANC with respect to mean square error It is also verified that the recurrent NN adaptive filter is superior to the feedforward NN filter. Thus, we identify that the NN adaptive filter is more effective than the linear adaptive filter for rejection of broadband time-varying noise in the ANC.

  • PDF

Noisy Time Varying Vibration Signal Analysis using Adaptive Predictor-Binary Tree Structured Filter Bank System (적응예측기-이진트리구조 필터뱅크 시스템을 이용한 잡음이 부가된 시변 진동신호 분석)

  • Bae, Hyeon-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Generally, a time-varying vibration signal is generated in a rotating machine system, and when there is a failure in the rotating machine, the signal contains noise. In this paper, we propose a system consisting of an adaptive predictor and a binary tree filter bank for analyzing time - varying vibration signals with noise. And the vibration signal analyzed results in this system is used for fault diagnosis of the rotating machine. The adaptive predictor of the proposed system predicts the periodic signal components, and the filter bank system decomposes the difference signal between the input signal and the predicted periodic signal into subband. Since each subband signal includes a noise signal component due to a failure, it is possible to diagnose the failure of the using rotary machine. The validity of the proposed vibration signal analysis method is shown in the simulations, where the periodic components cancelled vibrating signals are decomposed to 32 subband, and the signal characteristics related faults are analyzed.