• 제목/요약/키워드: 시뮬레이션 X

Search Result 554, Processing Time 0.027 seconds

The Study on Scattered Radiation Effects According to Acquisition of X-ray Imaging using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 의료영상 획득 시 산란선 발생 영향 연구)

  • Park, Ji-Koon;Kang, Sang-Sik;Yang, Seung-Woo;Heo, Ye-Ji;Kim, Kyo-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.549-555
    • /
    • 2018
  • The medical imaging technique images the contrast formed based on the difference in absorption coefficient of X-rays which changes according to the composition and thickness of the object. At this time, not only primary rays entering the image detector but also scattered rays greatly affect the image quality. Therefore, in this paper, Forward scattering rate and Scattered to primary ratio analysis were performed through Monte Carlo simulation in order to consider influence of scattered ray generated according to object thickness and radiation exposure area change on image quality. In the study, the Forward scattering rate corresponding to the thickness of the object was analyzed at a maximum of 15.3%p and the Scattered to primary ratio was analyzed at 2.00 to 4.54, but it was analyzed as maintaining a constant value for radiation exposure area change. Based on these results, the thickness of the object should be considered as a factor influencing the quality of the image, but radiation exposure area verified that it is a factor that does not affect the image quality. We believe that the results of this research can be utilized as basic information of scattered radiation to improve image quality.

A Study on the Reduction of Absorbed Dose through the Insertion of a Shielding Material in the Intraoralsensor of Dental Radiography (치과 방사선촬영 시 구내 센서 내 차폐체 삽입을 통한 피폭선량 감소 연구)

  • Kim, A Yeon;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.273-279
    • /
    • 2022
  • In order to reduce the absorbed dose given to the patient during dental radiography, a sensor that inserts a shield into the intraoralsensor was designed. Using the designed sensor, the change in absorbed dose depending on whether or not a shield was used was evaluated. The system used to evaluate the absorbed dose is VEX-S300C from Vatech, and the energy spectrum of X-rays was obtained through SPEKTR simulation based on the irradiation conditions of 65 kV, 3 mA, and 0.15 sec, and the number of photons for each energy was derived. After designing the system through Genat4 Application for Tomographic Emission(GATE) simulation, the energy spectrum obtained was used as a radiation source to calculate the absorbed dose. Lead was used for the shield, and simulations were performed at 0.1 mm thickness intervals from 0.1 mm to 0.5 mm was evaluated. In the case of using an X-ray field with a diameter of 60 mm, the decrease in absorbed dose according to the presence or absence of a shield decreased exponentially as the thickness of the shield increased. In addition, when a 20 mm × 30 mm field was used, the absorbed dose was significantly reduced even when no shield was used, and it was confirmed that the absorbed dose was further reduced when a shield was used.

Development of X-ray Detector using Liquid Crystal with Front Light (전면광원(Front Light)을 적용한 액정 X선 검출기 개발)

  • Rho, Bong Gyu;Baek, Sam Hak;Kang, Seok Jun;Lee, Jong Mo;Bae, Byung Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.831-840
    • /
    • 2019
  • The X-ray detector by liquid crystal with front light was proposed and verified by a X-ray image. The proposed detector utilizes the visible light instead of the electric signal by transistor. Therefore, it shows low noise and can be fabricated at low cost. The liquid crystal detector uses the orientation change of the liquid crystal molecule by conductivity change of the photoconductive layer. We can get the X-ray image from the transmitted light through the liquid crystal. The X-ray dose was calibrated from the measured transmittance of the visible light after comparison to the reference transmittance curve of the liquid crystal. The amorphous Se was used for photo con ducting layer and parylene was used for the liquid crystal alignment instead of the conventional alignment layer which needs high-temperature process over 200℃. The proposed X-ray detector can decrease the X-ray dose by high sensitivity which was verified by simulation. After the fabrication of the X-ray detector, the X-ray image was obtained as a function of the bias voltage to the liquid crystal. 10 lines/mm resolution was obtained from the line pattern and we will apply it to the 17inch diagonal liquid crystal X-ray detector with 3π retardation.

Optimal Design of Controller for Ultra-Precision Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 최적제어기 설계)

  • Kwak, L. K.;kim, J. Y.;Yang, D. J.;Ko, M. S.;You, S.;Kim, K. T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

Enhancement of Image Sharpness in X-ray Digital Tomosynthesis Using Self-Layer Subtraction Backprojection Method (관심 단층 제거 후 역투사법을 이용한 X-선 디지털 영상합성법에서의 단층영상 선명도 향상에 관한 연구)

  • Shon, Cheol-Soon;Cho, Min-Kook;Lim, Chang-Hwy;Cheong, Min-Ho;Kim, Ho-Kyung;Lee, Sung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • X-ray digital tomosynthesis is widely used in the nondestructive testing and evaluation, especially for the printed circuit boards (PCBs). In this study, we propose a simple method to reduce the blur artefact, frequently claimed in the conventional digital tomosynthesis based on SAA (shift-and-add) algorithm, and thus restore the image sharpness. The proposed method is basically based on the SAA, but has a correction procedure by finding blur artefacts from the forward-and back-projection for the firstly obtained, manipulated backprojection data. The manipulation is the replacement of the original data at the POI (plane-of-interest) by zeros. This method has been compared with the conventional SAA algorithm using the experimental measurements and Monte Carlo simulation for the designed PCB phantom. The comparison showed a much enhancement of sharpness in the images obtained from the proposed method.

A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network (유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2011
  • In this paper we present an approach to the structure identification based on genetic algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy-genetic hybrid system in order to predicate the Mackey-Glass Chaotic time series. In this scheme the basic idea consists of two steps. One is the construction of a fuzzy rule base for the partitioned input space via genetic algorithm, the other is the corresponding parameters of the fuzzy control rules adapted by the backpropagation algorithm. In an attempt to test the performance the proposed system, three patterns, x(t-3), x(t-6) and x(t-9), was prepared according to time interval. It was through lots of simulation proved that the initial small error of learning owed to the good structural identification via genetic algorithm. The performance was showed in Table 2.

Design of MSB-First Digit-Serial Multiplier for Finite Fields GF(2″) (유한 필드 $GF(2^m)$상에서의 MSB 우선 디지트 시리얼 곱셈기 설계)

  • 김창훈;한상덕;홍춘표
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.625-631
    • /
    • 2002
  • This paper presents a MSB-first digit-serial systolic array for computing modular multiplication of A(x)B(x) mod G(x) in finite fields $GF(2^m)$. From the MSB-first multiplication algorithm in $GF(2^m)$, we obtain a new data dependence graph and design an efficient digit-serial systolic multiplier. For circuit synthesis, we obtain VHDL code for multiplier, If input data come in continuously, the implemented multiplier can produce multiplication results at a rate of one every [m/L] clock cycles, where L is the selected digit size. The analysis results show that the proposed architecture leads to a reduction of computational delay time and it has much more simple structure than existing digit-serial systolic multiplier. Furthermore, since the propose architecture has the features of unidirectional data flow and regularity, it shows good extension characteristics with respect to m and L.

A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation (방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석)

  • Kim, Giyoon;Kim, Myungsoo;Lim, Kyungtaek;Lee, Eunjung;Kim, Chankyu;Park, Jonghwan;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

Active Airframe Vibration Control Simulations of Lift-offset Compound Helicopters in High-Speed Flights (고속 비행의 Lift-offset 복합형 헬리콥터 기체의 능동 진동 제어 시뮬레이션)

  • Hong, Sung-Boo;Kwon, Young-Min;Kim, Ji-Su;Lee, Yu-Been;Park, Byeong-Hyeon;Shin, Hyun-Cheol;Park, Jae-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.357-367
    • /
    • 2021
  • This paper studies the simulations of active airframe vibration controls for the Sikorsky X2 helicopter with a lift-offset coaxial rotor. The 4P hub vibratory loads of the X2TD rotor are obtained from the previous work using a rotorcraft comprehensive analysis code, CAMRAD II. The finite element analysis software, MSC.NASTRAN, is used to model the structural dynamics of the X2TD airframe and to analyze the 4P vibration responses of the airframe. A simulation study using Active Vibration Control System(AVCS) with Fx-LMS algorithm to reduce the airframe vibrations is conducted. The present AVCS is modeled using MATLAB Simulink. When AVCS is applied to the X2TD airframe at 250 knots, the 4P longitudinal and vertical vibration responses at the specified airframe positions, such as the pilot seat, co-pilot seat, engine deck, and prop gearbox, are reduced by 30.65 ~ 94.12 %.

Simulation of PO method based on Multi-thread (멀티스레드 기반 PO법 시뮬레이션)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2301-2306
    • /
    • 2011
  • Current general-purpose electromagnetic field simulators have been widespread applied, and is being used to electromagnetic problems such as antenna design, EMC design, measurement, and microwave device design, etc. This paper is to solve various electromagnetic problems in X-band region for utilizing multi-core-based PC available network resources more efficiently. The electromagnetic field simulator based on TCP / IP-based network topology, configuration, and its framework design is proposed and its availability is examined.