• Title/Summary/Keyword: 시뮬레이션 기반 획득

Search Result 273, Processing Time 0.023 seconds

A Novel Two-step Channel Prediction Technique for Adaptive Transmission in OFDM/FDD System (OFDM/FDD 시스템에서 Target QoS 만족을 위한 다단계 적응전송 채널예측기법)

  • Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.745-751
    • /
    • 2006
  • The transmitter requires knowledge of the channel status information in order to adopt the adaptive modulation and coding scheme(AMC) for OFDM system. But in the outdoor environment which the users have high mobility, the channel status information from the users is outdated, so that it induces the degradation of system throughput and packet error rate(PER) performance. To solve this problem, researches about applying channel prediction technique to the AMC scheme have been proceeded. Most channel prediction techniques assume that there is no channel variation in the predefined time duration, e.g., a slot. As a result, those techniques cannot compensate the degradation of PER performance resulting from the rapid variation of channel during the slot duration. This paper introduces a novel channel prediction technique for OFDM/FDD system to support adaptive modulation and coding scheme over rapidly time-varying multipath fading channel. The proposed channel prediction technique considers the time-varying nature of channel during the slot duration. Simulation results show that the AMC scheme of OFDM/FDD system utilizing the proposed channel prediction technique can guarantee the target PER of 1% without any loss of system throughput compared with the case supported by the conventional channel prediction under ITU-R Veh A 30km/h.

Duty Cycle Scheduling considering Delay Time Constraints in Wireless Sensor Networks (무선네트워크에서의 지연시간제약을 고려한 듀티사이클 스케쥴링)

  • Vu, Duy Son;Yoon, Seokhoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2018
  • In this paper, we consider duty-cycled wireless sensor networks (WSNs) in which sensor nodes are periodically dormant in order to reduce energy consumption. In such networks, as the duty cycle interval increases, the energy consumption decreases. However, a higher duty cycle interval leads to the increase in the end-to-end (E2E) delay. Many applications of WSNs are delay-sensitive and require packets to be delivered from the sensr nodes to the sink with delay requirements. Most of existing studies focus on only reducing the E2E delay, rather than considering the delay bound requirement, which makes hard to achieve the balanced performance between E2E delay and energy consumption. A few study that considered delay bound requirement require time synchronization between neighboring nodes or a specific distribution of deployed nodes. In order to address limitations of existing works, we propose a duty-cycle scheduling algorithm that aims to achieve low energy consumption, while satisfying the delay requirements. To that end, we first estimate the probability distribution for the E2E delay. Then, by using the obtained distribution we determine the maximal duty cycle interval that still satisfies the delay constraint. Simulation results show that the proposed design can satisfy the given delay bound requirements while achieving low energy consumption.

Fast Detection of Power Lines Using LIDAR for Flight Obstacle Avoidance and Its Applicability Analysis (비행장애물 회피를 위한 라이다 기반 송전선 고속탐지 및 적용가능성 분석)

  • Lee, Mijin;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2014
  • Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.

Initial System for Automation of PDQ-based Shape Quality Verification of Naval Ship Product Model (제품데이터품질(PDQ) 평가에 따른 함정 제품모델의 형상 품질검증 자동화 초기 시스템)

  • Oh, Dae-Kyun;Hwang, In-Hyuck;Ryu, Cheol-Ho;Lee, Dong-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • Recently, R.O.K. Navy is increasing re-usability of design data and application of M&S(Modeling and Simulation) through the establishment of collaborative product development environment focused on Naval Ship Product Model(NSPM). As a result, the reliability of the result of design is getting better, and furthermore, a study to improve quality of construction through simulation of production/operation is in progress. Accordingly, the database construction of design data and the DB(Database) quality become important, but there was not research related to those or it was just initial state. This paper conducted research about system of the quality verification process of shape elements which compose NSPM based on the quality verification guideline of NSPM as the result of the precedent study. The hull surface was limited as verification object. The study to verify two things that application of basic drawing by the cad model of hull surface, and whether there is error in the geometric quality of cad model was progressed. To achieve this goal, the verification criteria and algorithm were defined and the prototype system which is based on was developed.

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

Access Frequency Based Selective Buffer Cache Management Strategy For Multimedia News Data (접근 요청 빈도에 기반한 멀티미디어 뉴스 데이터의 선별적 버퍼 캐쉬 관리 전략)

  • Park, Yong-Un;Seo, Won-Il;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2524-2532
    • /
    • 1999
  • In this paper, we present a new buffer pool management scheme designed for video type news objects to build a cost-effective News On Demand storage server for serving users requests beyond the limitation of disk bandwidth. In a News On Demand Server where many of users request for video type news objects have to be serviced keeping their playback deadline, the maximum numbers of concurrent users are limited by the maximum disk bandwidth the server provides. With our proposed buffer cache management scheme, a requested data is checked to see whether or not it is worthy of caching by checking its average arrival interval and current disk traffic density. Subsequently, only granted news objects are permitted to get into the buffer pool, where buffer allocation is made not on the block basis but on the object basis. We evaluated the performance of our proposed caching algorithm through simulation. As a result of the simulation, we show that by using this caching scheme to support users requests for real time news data, compared with serving those requests only by disks, 30% of extra requests are served without additional cost increase.

  • PDF

Comparative Analysis of Focal Length Bias for Three Different Line Scanners (초점거리 편의가 지상 정확도에 미치는 영향 비교 연구 - 세가지 라인 스캐너를 대상으로 -)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.363-371
    • /
    • 2014
  • Most space-borne optical scanning systems adopt linear arrayconfigurations. The well-knownthree different types of space-borne sensors arealong-track line scanner, across-track linescanner, and three line scanner. To acquire accurate location information of an object on the ground withthose sensors, the exterior and interior orientation parameters are critical factors for both of space-borne and airborne missions. Since the imaging geometry of sensors mightchange time to time due to thermal influence, vibration, and wind, it is very important to analyze the Interior Orientation Parameters (IOP) effects on the ground. The experiments based on synthetic datasets arecarried out while the focal length biases are changing. Also, both high and low altitudes of the imagingsensor were applied. In case with the along-track line scanner, the focal length bias caused errors along the scanline direction. In the other case with the across-track one, the focal length bias caused errors alongthe scan line and vertical directions. Lastly, vertical errors were observed in the case ofthree-line scanner. Those results from this study will be able to provide the guideline for developing new linearsensors, so as for improving the accuracy of laboratory or in-flight sensor calibrations.

An Empirical Study on Predictive Modeling to enhance the Product-Technical Roadmap (제품-기술로드맵 개발을 강화하기 위한 예측모델링에 관한 실증 연구)

  • Park, Kigon;Kim, YoungJun
    • Journal of Technology Innovation
    • /
    • v.29 no.4
    • /
    • pp.1-30
    • /
    • 2021
  • Due to the recent development of system semiconductors, technical innovation for the electric devices of the automobile industry is rapidly progressing. In particular, the electric device of automobiles is accelerating technology development competition among automobile parts makers, and the development cycle is also changing rapidly. Due to these changes, the importance of strategic planning for R&D is further strengthened. Due to the paradigm shift in the automobile industry, the Product-Technical Roadmap (P/TRM), one of the R&D strategies, analyzes technology forecasting, technology level evaluation, and technology acquisition method (Make/Collaborate/Buy) at the planning stage. The product-technical roadmap is a tool that identifies customer needs of products and technologies, selects technologies and sets development directions. However, most companies are developing the product-technical roadmap through a qualitative method that mainly relies on the technical papers, patent analysis, and expert Delphi method. In this study, empirical research was conducted through simulations that can supplement and strengthen the product-technical roadmap centered on the automobile industry by fusing Gartner's hype cycle, cumulative moving average-based data preprocessing, and deep learning (LSTM) time series analysis techniques. The empirical study presented in this paper can be used not only in the automobile industry but also in other manufacturing fields in general. In addition, from the corporate point of view, it is considered that it will become a foundation for moving forward as a leading company by providing products to the market in a timely manner through a more accurate product-technical roadmap, breaking away from the roadmap preparation method that has relied on qualitative methods.

Design of Gamma Camera with Diverging Collimator for Spatial Resolution Improvement (공간분해능 향상을 위한 확산형 콜리메이터 기반의 감마카메라 설계)

  • Lee, Seung-Jae;Jang, Yeongill;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.661-666
    • /
    • 2019
  • Diverging collimators is used to obtain reduced images of an object, or to detect a wide filed-of-view (FOV) using a small gamma camera. In the gamma camera using the diverging collimators, the block scintillator, and the pixel scintillator array, gamma rays are obliquely incident on the scintillator surface when the source is located the periphery of the FOV. Therefore, the spatial resolution is reduced because it is obliquely detected in depth direction. In this study, we designed a novel system to improve the spatial resolution in the periphery of the FOV. Using a tapered crystal array to configure the scintillation pixels to coincide with the angle of the collimator's hole allows imaging to one scintillation pixel location, even if events occur to different depths. That is, even if is detected at various points in the diagonal direction, the gamma rays interact with one crystal pixel, so resolution does not degrade. The resolution of the block scintillator and the tapered crystal array was compared and evaluated through Geant4 Application for Tomographic Emission (GATE) simulation. The spatial resolution of the obtained image was 4.05 mm in the block scintillator and 2.97 mm in the tapered crystal array. There was a 26.67% spatial resolution improvement in the tapered crystal array compared to the block scintillation.

A Study on Backup PNT Service for Korean Maritime Using NDGNSS (NDGNSS 인프라를 활용한 국내 해상 백업 PNT 서비스 연구)

  • Han, Young-Hoon;Lee, Sang-Heon;Park, Sul-Gee;Fang, Tae-Hyun;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.42-48
    • /
    • 2019
  • The significance of PNT information in the fourth industrial revolution is viewed differently in relation to the past. Autonomous vehicles, autonomous vessels, smart grids, and national infrastructure require sustainable and reliable services in addition to their high precision service. Satellite navigation system, which is the most representative system for providing PNT information, receive signals from satellites outside the earth so signal reception power is low and signal structures for civilian use are open to the public. Therefore, it is vulnerable to intentional and unintentional interference or hacking. Satellite navigation systems, which can easily acquire high performance of PNT information at low cost, require alternatives due to its vulnerability to the hacking. This paper proposed R-Mode (Ranging Mode) technology that utilizes currently operated navigation and communication infrastructure in terms of Signals of OPportunity (SoOP). For this, the Nationwide Differential Global Navigation Satellite System (NDGNSS), which currently gives a service of Medium Frequency (MF) navigation signal broadcasting, was used to validate the feasibility of a backup infrastructure in domestic maritime areas through simulation analysis.