• Title/Summary/Keyword: 시멘트 시험편

Search Result 16, Processing Time 0.027 seconds

Effective Porosity Variation of Cement Samples According to Vacuum Pressure and Time (진공의 압력과 시간을 달리할 때 시멘트시험편의 유효공극률 변화)

  • Lee, Sang Kyu;Lee, Tae Jong;Kim, Hyoung Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.163-176
    • /
    • 2012
  • Effective porosity has been measured for cement specimen as a function of vacuum time and pressure in the vacuum saturation process. Six cement specimen are used; three of them are made of the same ratio of cement and sand, the other three are 100% cement mortar, of which average porosity is about 25% and 40%, respectively. Using the 6 samples, measured effective porosities are compared and examined with 5 different vacuum pressures (2, 4, 6, 8, 10 torr) and times (20, 40, 60, 80, 100 minute), respectively. Comparing measured effective porosity from experiments when vacuum time varies from 100 minute to 20 minute with 20 minute step and vacuum pressure is fixed to 10, 6, and 2 torr, average deviation decreases as 0.6, 0.5, and 0.2% respectively. Comparing measured effective porosity from experiments when vacuum pressure varies from 2 torr to 10 torr with 2 torr step and vacuum time is fixed to 100, 60, and 20 minute, average deviation increases as vacuum time decreases. These results can be a background of suggested method of ISRM that describes the vacuum time longer than 60 minute and vacuum pressure higher than 6 torr. In this study, only qualitative discussion can be possible for the effects on the effective porosity by decreasing 20 minute vacuuming time at the same pressure or by decreasing 2 torr of vacuum pressure at the same vacuum time. This is because the sample could not reached to perfectly dried condition even though the sample were dried at $105^{\circ}C$ and following the ISRM suggested method, so that initial water content could not be the same at each experiment.

폴리머시멘트고화체에서의 폴라머첨가가 압축강도에 미치는 영향

  • Gwak, Gyeong-Gil;Kim, Tae-Guk;Ji, Yeong-Yong;Kim, Dong-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2010.05a
    • /
    • pp.115-116
    • /
    • 2010
  • 방사성농축폐액처리를 위한 Polymer-Modified-portlandcement 고화체는 Polymer 및 시멘트, 물을 혼합매질로 제조되며 농축폐액처리를 위해 Emulsion Polymer를 사용하였으며 PMC 고화체의 물성을 평가하기위한 고화체의 제조에서 이들 매질의 최적혼합비를 찾기 위해 Polymer 및 물, 시멘트의 혼합비를 1/1/2,1/2/4,1/3/9 등 혼합비에 따른 시편 및 Polymer 첨가량의 증가에 따라 함유비를 달리하는 시편을 제조하여 경화시간별 압축강도를 측정하였으며 매질의 최적혼합비 및 폴리머의 투입비를 구하고자하였다. 특성평가시험을 위한 시편으로는 직경 50, 높이 100mm(L/D=2) 인시편을 제조하여 압축강도를 측정하였으며 폴리머와 시멘트의 결합상태를 확인하기위해 SEM사진을 통한 미세구조를 관찰하였으며 시험결과 P/W/C의비가 1/3/9인 혼합비시편의 압축강도가 $343.36Kg_f/cm^2$로 가장 높았으며 폴리머의 함유량을 달리한 시험에서는 7%폴리머 함유시편은 $397.24Kg_f/cm^2$, 20% 폴리머함유시편은 $175.36Kg_f/cm^2$으로 폴리머의 함유량이 7~15% 이내의 폴리머함유고화체가 적합한 것으로 판단되었으며 폴리머의 투입양이 증가할수록 압축강도가 감소하였으며 경화시간도 최소4주이상 되어야하는 것으로 판단되었다.

  • PDF

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

Electrical Resistivity of Cylindrical Cement Core with Successive Substitution by Electrolyte of Different Conductivity (전도성이 다른 공극수로 순차 치환한 시멘트 시험편의 전기비저항)

  • Lee, Sang-Kyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.328-337
    • /
    • 2009
  • To investigate the relation between pore fluid conductivity and bulk resistivity of a rock sample it is assumed that electrolyte solution perfectly substitute the pore fluid that occupied the pore space within the sample in general. In this study, it is investigated that how much can the electrolyte solution substitute the pore fluid by repeating the same saturation process. Four kinds of NaCl solutions of 8, 160, 3200, 64000 ${\mu}S$/cm are used. The saturation process has repeated four times for each electrolyte in increasing conductivity order first then four times each in decreasing order. The more the saturation process repeated with the same electrolyte, the more electrolyte solution substitute the pore fluid. Geometric mean of bulk resistivity in increasing and decreasing orders with the same electrolyte solution is assumed to be mostly close to the bulk resistivity with perfect substitution. Bulk resistivity measurements for both increasing and decreasing order differs within 10% to the geometric mean when repeating the saturation process 4 times while maximum 40% difference is observed when single saturation process for each electrolyte solution with increasing order. The modified parallel resistant model can generally represent the relations between pore fluid resistivity and bulk resistivity in the experiment, but more experimental data with various rock samples with different porosity is needed to generalize the model.

Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design (원료 배합에 따른 칼슘 실리케이트 시멘트 클링커의 성분 및 상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • In the cement industry, in order to reduce CO2 emissions, technology for raw materials substitution and conversion, technology for improving process efficiency of utilizing low-carbon new heat sources, and technology for collecting and recycling process-generated CO2 are being developed. In this study, we conducted a basic experiment to contribute to the development of CSC that can store CO2 as carbonate minerals among process-generated CO2 capture and recycling technologies. Three types of CSC clinker with different SiO2/(CaO+SiO2) molar ratios were prepared with the clinker raw material formulation, and the characteristics of the clinker were analyzed. As a result of analysis and observation of CSC clinker, wollastonite and rankinite were formed. In addition, as a result of the carbonation test of the CSC paste, it was confirmed that calcite was produced as a carbonation product. The lower the SiO2/(CaO+SiO2) molar ratio in the CSC clinker chemical composition, the lower the wollastonite production amount, and the higher the rankinite production amount. And the amount of calcite production increased with the progress of carbonation of the CSC paste specimen. It is judged that rankinite is more reactive in mineralizing CO2 than wollastonite.

Basic Properties of Polymer Cement Composites with Polymer Dispersions and Cement for Crack Repair (폴리머 디스퍼전과 시멘트로 만든 균열보수용 폴리머 시멘트 복합체의 기초적 성질)

  • Young-Kug Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.97-104
    • /
    • 2023
  • The aim of this study was to produce polymer cement composites (PCCs) composed of polymer dispersion and cement as crack repair materials for RC structures, and to investigate their fundamental properties. The test mixtures for the study were based on EVA and SAE polymer dispersions, and the water-cement ratio was determined while varying the polymer-cement ratio(P/C) in four different levels (20%, 60%, 80%, and 100%) to achieve the desired viscosity of PCCs considering their fillability as crack repair materials. Additionally, silica fume was incorporated into P/C 80% and 100% specimens to enhance their stiffness. The basic properties of PCCs as crack repair materials, such as viscosity, flowability, fillability, tensile strength, elongation, and modulus of elasticity, were examined. The results showed that P/C depending on the type of polymer significantly affected the viscosity and flowability, and appropriate w/c ratios were needed to achieve the desired viscosity for the mixture design with consideration of fillability as crack repair materials for RC structures. All designed mixtures in this study exhibited excellent fillability. The tensile strength and elongation of PCCs satisfied the KS regulation for cement- polymer modified waterproofing coatings. The incorporation of silica fume improved the tensile strength and modulus of elasticity of PCCs. Depending on the type of polymer, mixtures using SAE showed better fundamental properties as crack repair materials for RC structures compared to those using EVA. In conclusion, SAE-based P/C 80% or 100% with the addition of up to 30% silica fume can be recommended as suitable mixtures for crack repair of RC structures.

Flexural Performance of Cement Treated Clay-Sand Mixtures Reinforced with Synthetic Fibers (합성섬유로 보강된 시멘트-점토-모래 혼합토의 휨성능 평가에 관한 연구)

  • Jung, Du-Hwoe;Cho, Baik-Soon;Lee, Yong-Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.19-29
    • /
    • 2017
  • The effects of synthetic fibers, cement content, and sand content on the flexural performance of cement-clay-sand mixtures has been evaluated through a flexural performance test with a third-point loading. Beam specimens for the flexural performance test were fabricated with a various amount of cement, sand, and synthetic fibers. Two types of fibers, PVA (Polyvinyl alcohol) and PP (Polypropylene) fibers, were employed in the test. The test results have exhibited that the factors considered in the test have significant effects on the flexural performance of the mixtures in several aspects. The flexural performance of the mixtures has been improved if the mixtures were reinforced with synthetic fibers. The flexural strength and the flexural toughness of the mixtures has been increased as the fiber content was increased. A multiple linear regression analysis has been performed to evaluate the effect of fiber content, cement dosage, and sand content on the flexural performance of the mixtures in terms of flexural strength and flexural toughness. Cement content and sand content were estimated as important factors to have an influence on the first-crack strength and the peak strength whereas the fiber content has the most significant influence on the post-crack behavior. The first-crack strength and the ultimate strength were increased as the cement content and the sand content were increased. As the fiber content was increased, the flexural toughness was increased.

Properties of Adhesion in Flexure and Tension of Polymer Cement Mortar Using SAE Emulsion with Blast-Furnace and Fly Ash as a Repair Material (보수재료로서 고로슬래그 미분말 및 플라이애쉬를 혼입한 SAE 에멀젼 기반 폴리머 시멘트 모르타르의 휨접착 및 인장접착 특성)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.485-494
    • /
    • 2019
  • This study is to evaluate the effect of admixtures such as blast-furnace slag and fly ash on adhesion in flexure and tension of polymer cement mortar(PCM) using SAE emulsion. The test specimens are prepared with five polymer-cement ratios and five admixture contents, and tested for flexural strength, adhesion in flexure, tensile strength and adhesion in tension. Based on the test results, no improvement of flexural strength and adhesion in flexure caused by admixtures in PCM can be indicated, but the tensile strength and adhesion in tension is improved due to mixing of the admixtures. In particular, the maximum of adhesion in tension of PCM with P/C 20% and BF content of 10% is 3.35MPa which is about 2.36 times higher than that of ordinary cement mortar, and 1.32 times that of PCM that does not contain any admixture. The average ratio of adhesion in tension to tensile strength of PCM was 48.7%. It is apparent that admixture contents of 5% or 10% could be proposed for improvement of tensile strength and adhesion in tension of PCM.

The Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement (시멘트콘크리트 포장체의 거동연구를 위한 축소모델 배합의 재료적 상사성)

  • Ko, Young-Zoo;Lee, Yeoung-Woo;Bae, Ju-Seong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.139-145
    • /
    • 1999
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate material similitude between the prototype and the model concrete. Based on the results of experiments, we compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-stain curves of prototype concrete, it is important that various mix proportions of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

Compressive Strength Correlation of Very-Early-Strength Dry-Mix Shotcrete on Test Method (측정방법에 따른 속경성 건식 숏크리트 압축강도의 상관관계)

  • Yun, Kyong-Ku;Choi, Sung-Yong;Kim, Jin-Woung;Kil, Yong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3988-3997
    • /
    • 2010
  • Shotcrete was a mortar or concrete that is pneumatically projected at high velocity onto a subject. It has been applied for tunneling, underground big-spaces, slope stabilization. Shotcrete is increasing use in structure repair. The dry-mix shotcrete require a smaller equipment, easy maintenance, possible of very-earlystrength materials than wet-mix shotcrete, which make this process attractive and economic for structural repairs. It is common practice core compressive strength to the dry-mix shotcrete quality control. This test is very difficult estimating eraly-strength of Very-Early-Strength Dry-Mix Shotcrete. The purpose of this research was to analyze the correlation of test results among cube test, core test, pullout test and maturity. The correlationship analysis of test results among cube test, core test, pullout test and maturity showed more than 90%.