• Title/Summary/Keyword: 시멘트 모르타르 충전재

Search Result 14, Processing Time 0.017 seconds

Physical Properties according to Temperature Change of the Cement-Asphalt Mortar for Precast Slab Track (프리캐스트 슬래브 궤도용 시멘트-아스팔트 유제 혼합 모르타르 충전재의 온도변화에 따른 물리적 특성)

  • Oh, Soo-Jin;Lee, Hu-Sam;Jang, Seung-Yup;Jeong, Yong;Jung, Young-Min;Yoon, Seob
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1273-1278
    • /
    • 2007
  • The cement-asphalt mortar is a mixture of cement and asphalt emulsion, and is utilized as a underpouring materials for the railway track which is used to fill under slab panel space so as to provide a stabilized track support and a tool for reduction of noise and vibration. To increase the workability of grouting, this study investigates the effect of temperature on cement-asphalt mortar by analyzing its physical and mechanical properties before/after hardening according to the temperature (10, 15, 20, 25, $30^{\circ}C$). According to the test results, it is found that as for the physical property of fresh cement-asphalt mortar the more mixture temperature become higher or lower, the more fluidity become worse. But by increasing reducing agent amount and its unit quantity, the required fluidity is met. The compressive strength as physical property of hardened cement-asphalt mortar become lower when temperature is lower but taking it by and large the physical properties of cement-asphalt mortar before/after hardening aren't so affected by temperature and well satisfy the requirement. And it has proved that rate of expansion and freezing and thawing resistance aren't affected by temperature.

  • PDF

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers (충전재에 의한 지오폴리머의 고온수축 감소효과)

  • Cho, Young-Hoon;An, Eung-Mo;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.

Evaluation of Physical Properties and Material Characterization for Structural Frame at the Stained Glass Windows to Gongju Jeil Church of the Registered Cultural Heritage in Korea (국가등록문화재 공주제일교회 스테인드글라스 구조재의 재질특성과 물성 평가)

  • Bo Young Park;Hye Ri Yang;Chan Hee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.103-114
    • /
    • 2023
  • The Christian Museum of Gongju Jeil Church was first built in 1931 and was largely damaged during the Korean War, but the walls and chimneys have been preserved. This building has a high architectural values in that the chapel was reconstructed in 1956, and maintains its original form through repair of damaged parts rather than new construction. The stained glass windows were as installed in 1979 and has a great significance in the Dalle de Verre method using lump glass. However, some of the stained glass damaged partially, such as various cracks and splits, and vertical and horizontal cracks in the joint fillers of supporting the colored glass. As the structural materials of the stained glass window, an iron frame and cement mortar filled with it were used, and corrosion of iron, cracking of mortar and granular decomposition appear partially due to weathering. In the joint fillers, the content of Ca and S is very high, indicating that gypsum were used as admixtures, and the gypsums grow in a rhombohedral and forms a bundle, which is investigated to have undergone recrystallization. As a result of modeling the ultrasonic velocity at the joint fillers, the left and right windows at the entrance show relatively weak in the range of 800 to 1,600m/s, and the lower right corner of the altar window and the upper left corner of the center window were also 1,000 to 1,800m/s, showing relatively low physical properties. And gypsums produced during the neutralization of lime mortar were detected in the joint fillers and contaminants on the surface. Such salts may cause damage to the joint material due to freezing and thawing, so appropriate preventive conservation is required. Also, since various damage types are complexly appearing in stained glass window and joint filler, customized conservation treatment should be reviewed through clinical tests.

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.