• Title/Summary/Keyword: 시멘트모르타르

Search Result 749, Processing Time 0.027 seconds

Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar (무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價))

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • In this study, we investigated the strength, shrinkage and durability of alkali-activated mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless alkali-activated concrete. In order to compare with the alkali-activated mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to shrinkage and freezing-thawing of the cementless alkali-activated mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, reduce shrinkage of about 40% and improve freezing-thawing durability of approximately 20%, but promote the velocity of carbonation of 2~3 times.

예열된 시험체를 사용한 고온가열하에서의 폴리머 시멘트 모르타르의 역학적 특성에 관한 연구

  • Kim, Hyeong-Jun;Kim, Dong-Ik;Yun, Jun-Su;An, Byeong-Gwon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.29-30
    • /
    • 2013
  • 폴리머 시멘트 모르타르(Polymer-Modified Cement Mortar, 이하, PCM으로 칭함)는 일반 시멘트 모르타르와 비교해서 접착성, 치밀성, 내약품성, 시공성등이 우수한 재료로, 콘크리트 구조물의 보수 보강에 필수불가결한 재료로 인식되고 있다. 그러나, 혼입된 폴리머는 유기물 재료로, 화재와 같은 고온을 받는 경우에는 무기계 재료인 일반 모르타르 및 콘크리트와는 또 다른 고온역에서의 성상을 보일 것으로 예상된다. 이로 인해, PCM으로 보수 보강된 건축물에 화재가 발생할 경우, 고온에서의 안전성 및 화재 후의 보수 보강 필요성에 대한 평가를 행할 필요가 있다. 이에 본 논문에서는 평가시 기본적인 데이터로 활용될 수 있는 PCM의 고온노출시의 역학적 특성에 대한 검토방안으로, 기존의 실험조건 및 실험방법을 응용한 새로운 실험방법을 적용, 비교검토를 행하고, 고온영역에서의 PCM의 역학적 특성에 대해 고찰했다.

  • PDF

Studies on the Strength of Cement Mortars with Surface Crosslinked cPSA Absorbent (표면이 가교된 Crosslinked Poly(sodium acrylate) 흡수제가 첨가된 시멘트 모르타르의 강도 특성 연구)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.208-215
    • /
    • 2012
  • To study the effect of surface crosslinked layer on the crosslinked poly(sodium acrylate) (cPSA) absorbent, we synthesized several surface crosslinked cPSAs with 5, 10 and 20 g of ethylene glycol dimethacrylate (EGDMA) by an inverse emulsion polymerization method to delay the absorption of excess water in concrete. We measured the compressive and flexural strength of mortars having 0.5, 1.0 and 1.5 wt% cPSA-EGDMA. We observed the increase of compressive and flexural strength of the cPSA-EGDMA added cement mortars except for the 0.5 wt% cPSA-EGDMA (20 g) added cement mortar. 1.0 wt% cPSA-EGDMA (5 g) added cement mortar showed about 16% and 10% increased compressive and flexural strength than those of plain cement mortar. To study the effect of porosity on compressive and flexural strength, we used FE-SEM and porosimeter. FE-SEM analysis showed swollen cPSMAEGDMA (5 g) filled between calcium silicate hydrate (C-S-H) crystals. We observed the decreased porosity of the cPSA-EGDMA added cement mortars than that of plain cement mortar. 1.0 wt% cPSA-EGDMA (5 g) cement mortar showed the lowest porosity of 16.5%.

Characteristics of Mortar Mixed Nitric Acid Neutralized Red Mud by Cement Type (시멘트 종류별 질산 중화 레드머드 혼입 모르타르의 특성)

  • Kang, Suk-Pyo;Hong, Seong Uk;Kim, Sang-Jin;Hong, Seok-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.693-702
    • /
    • 2023
  • This research explores the potential application of Liquid Red Mud(LRM), a byproduct of industrial processes, in the construction sector. We neutralized LRM(pH 10-12) using nitric acid, aiming to understand its viability in construction applications. The study involved substituting LRM(pH 7-8) in mortar formulations, varying by cement type. We assessed the properties of these mixtures by measuring flow, setting time, and compressive strength. Additionally, X-ray Diffraction(XRD) and Scanning Electron Microscopy(SEM) analyses were conducted to examine the chemical properties. Results indicated a reduction in flow value for LRM and LN(neutralized LRM) compared to the control (Plain ) across different cement types. The setting times(initial and final) for LRM and LN were notably shorter than Plain. In compressive strength tests, LRM replaced with slag cement showed enhanced initial strength, though long-term strength gains were marginal across different cement types. SEM analysis revealed distinct voids in Plain and LN, with LRM exhibiting a fibrous microstructure. XRD patterns in SN(slag neutralized) resembled those in OR(original red mud) and ON(original neutralized), with a notable peak at a 2θ value of 22°. The study concludes that unneutralized LRM, when substituted for slag cement in mortar, yields superior initial strength compared to its neutralized counterpart.

Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash (매립회를 사용한 시멘트 모르타르의 재료 물성 평가에 대한 실험적 연구)

  • Jung, Sang Hwa;Kim, Joo Hyung;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.108-117
    • /
    • 2013
  • Among the byproducts from thermal power plant using coal combustion, fly ash as mineral admixture is widely utilized in concrete manufacturing for its engineering merits. However residuals including bottom ash are usually reclaimed. This study presents an evaluation of engineering properties in cement mortar with pond ash (PA). For this work, two types of pond ash (anthracite and bituminous coal) are selected from two reclamation sites. Cement mortar specimens considering two w/c (0.385 and 0.485) ratios and three replacement ratio of sand (0%, 30%, and 60%) are prepared and their workability, mechanical, and durability performance are evaluated. Anthracite pond ash has high absorption and smooth surface so that it shows reasonable workability, strength development, and durability performance since it has dense pore structure due to smooth surface and sufficient mixing water inside. Reuse of PA is expected to be feasible since PA cement mortar has reasonable engineering performance compared with normal cement mortar.

Evaluation on the Performance of Mortars Made with Calcium Aluminate Cement (칼슘알루미네이트 시멘트 모르타르의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2015
  • In this study, several properties of mortars made with calcium aluminate cement (CAC) such as hydrated products, strength characteristics, absorption, surface electric resistivity and chloride ions penetration resistance were experimentally investigated. The properties of CAC mortars were compared to those of ordinary portland cement (OPC) mortars. From the test results, it was found that the main hydrated products for CAC mortars were of $C_2AH_8$ and $CAH_{10}$, while CH, ettringite and calcite for OPC mortars. The surface electric resistivity and chloride ions penetration resistance of CAC mortars were significantly beneficial compared to those of OPC mortars. However, it should be noted that the absorption properties of CAC mortars were negatively examined. Thus, it needs to have more study for the improvement of surface absorption of CAC matrices. In addition, the combined mixture of CAC and OPC were ineffective to improve some performances of mortars.

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;최응규;김진근;이칠성;이상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.167-175
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix proportions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate shrmkage of mortar. The water /cement ratio used in construction field is about 64% by the investigation. Even if the water /cement ratio of mortar is reduced, floor mortar is still able to have the required workability by the appropriate use of the fine aggregate with high fineness mo'dulus and superplastizer. The equations hetween mortar flow and water /cement ratio, sand /cement ratio, fineness modulus of fine aggregate were proposed in this study. And the proposed equation may provide available mix proportions of floor mortar.

Mortar Characterization using Electrical Resistivity Method (모르타르의 전기비저항 특성)

  • Farooq, Muhammad;Park, Sam-Gyu;Song, Young-Soo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.215-220
    • /
    • 2009
  • Cement based mortars are widely used to improve the soft ground of a dam site, highway construction, and karst voids. The mechanical properties of the mortar are well documented in literature, however very limited work is done on their physical properties such as electrical resistivity which is considered as one of the most important physical property known while improving the soft grounds. In this paper, electrical resistivity of the Portland cement mortars is examined by employing the Wenner technique. Cylindrical specimens with various water/cement ratios (w/c) ranges from 0.35, 0.45, 0.50 and 0.65 were cast and tested. The test results showed that the electrical resistivity of the mortar increases with increasing curing time and decreases with increasing water content and w/c. A reasonable, good relation was found between electrical resistivity and compressive strength of mortar.