Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.2.208

Studies on the Strength of Cement Mortars with Surface Crosslinked cPSA Absorbent  

Hwang, Ki-Seob (Department of Chemical Engineering, Keimyung University)
Jang, Seok-Soo (Department of Civil Engineering, Keimyung University)
Jung, Yong-Wook (Department of Civil Engineering, Keimyung University)
Lee, Seung-Han (Department of Civil Engineering, Keimyung University)
Ha, Ki-Ryong (Department of Chemical Engineering, Keimyung University)
Publication Information
Polymer(Korea) / v.36, no.2, 2012 , pp. 208-215 More about this Journal
Abstract
To study the effect of surface crosslinked layer on the crosslinked poly(sodium acrylate) (cPSA) absorbent, we synthesized several surface crosslinked cPSAs with 5, 10 and 20 g of ethylene glycol dimethacrylate (EGDMA) by an inverse emulsion polymerization method to delay the absorption of excess water in concrete. We measured the compressive and flexural strength of mortars having 0.5, 1.0 and 1.5 wt% cPSA-EGDMA. We observed the increase of compressive and flexural strength of the cPSA-EGDMA added cement mortars except for the 0.5 wt% cPSA-EGDMA (20 g) added cement mortar. 1.0 wt% cPSA-EGDMA (5 g) added cement mortar showed about 16% and 10% increased compressive and flexural strength than those of plain cement mortar. To study the effect of porosity on compressive and flexural strength, we used FE-SEM and porosimeter. FE-SEM analysis showed swollen cPSMAEGDMA (5 g) filled between calcium silicate hydrate (C-S-H) crystals. We observed the decreased porosity of the cPSA-EGDMA added cement mortars than that of plain cement mortar. 1.0 wt% cPSA-EGDMA (5 g) cement mortar showed the lowest porosity of 16.5%.
Keywords
absorbent; cement mortar; compressive strength; flexural strength; porosity;
Citations & Related Records
연도 인용수 순위
1 Y. Zhang, M. Deng, and P. He, Polymer(Korea), 30, 286 (2006).
2 O. Sohn, S. J. Sim, D. H. Lee, Y. K. Lee, J.-H. Kim, and D. Kim, Polymer(Korea), 28, 18 (2004).
3 J. Zhang and A. Wang, React. Funct. Polym., 67, 737 (2007).   DOI   ScienceOn
4 P. J. Dowding and B. Vincent, Colloid Surface A, 161, 259 (2000).   DOI   ScienceOn
5 W.-F. Lee and Y.-C. Chen, Eur. Polym. J., 41, 1605 (2005).   DOI   ScienceOn
6 Y. Mylonas, G. Bokias, I. Iliopoulos, and G. Stakos, Eur. Polym. J., 42, 849 (2006).   DOI   ScienceOn
7 M. Sadeghi and H. Hosseinzadeh, Turk. J. Chem., 32, 375 (2008).
8 P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953.
9 I. Ogawa, H. Yamano, and K. Miyagawa, J. Appl. Polym. Sci., 47, 217 (1993).   DOI   ScienceOn
10 K. S. Hwang, M. G. Jung, S. S. Jang, Y. W. Jung, S. H. Lee, and K. R. Ha, Polymer(Korea), 34, 434 (2010).
11 A. R. Khaloo, M. R. Mohamadi Shooreh, and S. M. Askari, J. Mater. Civ. Eng., 21, 349 (2009).   DOI   ScienceOn
12 K. S. Hwang, S. S. Jang, J. W. Jung, S. H. Lee, and K. R. Ha, Polymer(Korea), 35, 363 (2011).
13 B. Kriwet, E. Walter, and T. Kissel, J. Control. Release, 56, 149 (1998).   DOI   ScienceOn
14 J. Zhang, M. W. Sun, L. Zhang, and X. M Xie, J. Appl. Polym. Sci., 90, 1851 (2003).   DOI   ScienceOn
15 Y.-D. Luo, C.-A. Dai, and W.-Y. Chiu, J. Colloid Interface Sci., 330, 170 (2009).   DOI   ScienceOn
16 H. Li, J. Zhao, and E. Ruckenstein, Colloid Surface A, 161, 489 (1999).
17 S. Diamond, Cement Concrete Res., 30, 1517 (2000).   DOI   ScienceOn
18 P. K. Meth and P. J Monteiro, Concrete: Microstructure, Properties, and Materials, 3rd edition, McGraw-Hill, New York, 2006.
19 C. Y. Rha, J. W. Seong, C. E. Kim, S. K. Lee, and W. K. Kim, J. Mater. Sci., 34, 4653 (1999).   DOI   ScienceOn
20 D. A. Williams, A. W. Saak, and H. M. Jennings, Cement Concrete Res., 29, 1491 (1999).   DOI   ScienceOn
21 C. Y. Rha, C. E. Kim, C. S. Lee, K. I. Kim, and S. K. Lee, Cement Concrete Res., 29, 231 (1999).   DOI   ScienceOn
22 A. M. Neville, Properties of Concrete, 4th edition, John Wiley & Sons, New York, 1996.