• Title/Summary/Keyword: 시맨틱 태깅

Search Result 14, Processing Time 0.028 seconds

High Level Semantic Tagging in Clinical Documents Using a HMM Model (HMM 모델을 이용한 의료 문서 대상 고차원 개념 태깅)

  • Jang Hye-Ju;Song Sa-Kwang;Myaeng Sung-Hyon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.19-21
    • /
    • 2006
  • 본 논문에서는 의료임상 문서의 구절(phrase)를 대상으로 고차원 개념의 정보를 태깅하는 시맨틱 태깅 시스템을 제안하고 있다. 시스템은 의사들이 기록한 임상 기록으로부터 정보를 추출한다. 태깅은 UMLS와 POS, 약어 태깅이 된 문서를 대상으로 HMM 모델에 의거하여 이루어지게 된다. 태깅된 결과는 의료 상에서의 경험적 지식을 추출하는데 이용되어 의사들의 의사 결정을 지원하게 된다.

  • PDF

An Image Bulletin Board System providing Semantic-based Searching (의미 기반 정보 검색을 제공하는 이미지 게시판 시스템)

  • 정의현;조동찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.733-735
    • /
    • 2004
  • 게시판 시스템은 양방향으로 정보를 교환하는 정보 시스템으로서의 높은 효용을 지니고 있으며, 웹과 결합하여 다양한 정보 시스템의 핵심 요소로 자리잡고 있다. 또한 이미지 등의 멀티미디어 정보를 게시물에 포함하여 효율적인 정보 공유에 사용되고 있다. 그러나 지금까지의 게시판 시스템은 게시물의 내용에 접근하기 위해, 단순한 텍스트 패턴 매칭에 의존하고 있다. 이러한 접근 방식은 텍스트 중심의 게시판에서는 어느 정도 효용을 갖지만. 멀티미디어를 포함하는 게시판의 경우에는 적용되기 어려운 단점을 갖고 있다. 본 논문에서는 이의 해결을 위해 이미지 데이터를 포함하는 게시물에 대해 시맨틱 태깅을 할 수 있는 게시판 시스템에 관하여 논한다. 제안된 시스템은 사전에 정해진 태깅 정보가 코드에 고착되지 않고, 외부에서 지정한 시맨틱 태깅을 동적으로 수용하는 구조물 갖고 있다. 이러한 구조를 통하여 이미지의 종류나 성격에 가장 적합한 태깅을 동적으로 지정할 수 있게 되며. 의미 기반의 검색을 지원하게 된다.

  • PDF

A Method for Requirements Traceability for Reuse of Artifacts using Requirements-Ontology-based Semantic Tagging (요구사항 온톨로지 기반의 시맨틱 태깅을 활용한 산출물의 재사용성 지원을 위한 요구사항추적 방법)

  • Lee, Jun-Ki;Cho, Hae-Kyung;Ko, In-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.357-365
    • /
    • 2008
  • Requirements traceability enables to reuse various kinds of software artifacts, which are the results from software development life cycle, rather than reuse source code only. To support requirements traceability for reuse of software artifacts, 1) artifacts should be described based on requirements and 2) a requirements tracing method should be supported. In this paper, we provide a description model for annotating requirements information to software artifacts by using requirements ontology. We also provide semantic tagging method users to efficiently annotate artifacts with the requirements ontology. And we finally present how requirements traceability is supported based on requirements ontology and also suggest the system architecture for requirements traceability support.

Enhanced RDFa Tagging Method using XML Editing Tool (XML 편집도구를 이용한 향상된 RDFa 태깅 기법)

  • Choi, Young-Ho;Cha, Seung-Jun;Lee, Kyu-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.155-158
    • /
    • 2010
  • 시맨틱 웹 기술을 활용한 OpenAPI 의미 기반 검색 시스템에서 설명정보페이지에 의미정보를 가진 메타데이터를 첨가하기 위해 RDFa 기술을 이용한 태깅을 하였다. 하지만 태깅 시 사람이 수작업을 통해 입력하기 때문에 시간소모가 크고 오류 위험이 높다는 제약사항이 있다. 이러한 제약사항을 해결하기 위해 본 논문에서는 XML/XHTML 편집도구를 이용한 향상된 RDFa 태깅을 제안한다. 이는 속도향상과 오류 감소의 방법으로 XML/XHTML 편집도구에서 제공하는 자동완성 기능을 제안하고 있다. 그리고 자동완성 기능을 사용하기 위해 DTD를 수정하여 적용하였고 수정된 방법을 테스트한 결과 기존의 수동 태깅 기법보다 걸리는 시간이 단축됐고, 오류를 줄일 수 있음이 확인되었다. 결과를 얻을 수 있었다.

Automatic semantic annotation of web documents by SVM machine learning (SVM 기계학습을 이용한 웹문서의 자동 의미 태깅)

  • Hwang, Woon-Ho;Kang, Sin-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.2
    • /
    • pp.49-59
    • /
    • 2007
  • This paper is about an system which can perform automatic semantic annotation to actualize "Semantic Web." Since it is impossible to tag numerous documents manually in the web, it is necessary to gather large Korean web documents as training data, and extract features by using natural language techniques and a thesaurus. After doing these, we constructed concept classifiers through the SVM (support vector machine) teaming algorithm. According to the characteristics of Korean language, morphological analysis and syntax analysis were used in this system to extract feature information. Based on these analyses, the concept code is mapped with Kadokawa thesaurus, which made it possible to map similar words and phrase to one concept code, to make training vectors. This contributed to rise the recall of our system. Results of the experiment show the system has a some possibility of semantic annotation.

  • PDF

A Study of a Semantic Web Driven Architecture in Information Retrieval: Developing an Exploratory Discovery Model Using Ontology and Social Tagging (정보검색의 시맨틱웹 지향 설계에 관한 연구 - 온톨로지와 소셜태깅을 활용한 탐험적 발견행위 모델개발을 중심으로 -)

  • Cho, Myung-Dae
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2010
  • It is necessary, due to changes in the information environment, to investigate problems in existing information retrieval systems. Ontologies and social tagging, which are a relatively new means of information organization, enable exploratory discovery of information. These two connect a thought of a user with the thoughts of numerous other people on the Internet. With these connection chains through the interactions, users are foraging information actively and exploratively. Thus, the purpose of this study is, through qualitative research methods, to identify numerous discovery facilitators provided by ontologies and social tagging, and to create an exploratory discovery model based on them. The results show that there are three uppermost categories in which 5, 4 and 4 subcategories are enumerated respectively. The first category, 'Browsing and Monitoring,' has 5 sub categories: Noticing the Needs, Being Aware, Perceiving, Stopping, and Examining a Resource. The second category, Actively Participating, has 4 categories: Constructing Meaning, Social Bookmarking and Tagging, Sharing on Social Networking, Specifying the Original Needs. The third category, Actively Extends Thinking, also has 4 categories: Social Learning, Emerging Fortuitous Discovery, Creative Thinking, Enhancing Problem Solving Abilities. This model could contribute to the design of information systems, which enhance the ability of exploratory discovery.

Development of Search Method using Semantic technologies about RESTful Web Services (시맨틱 기술을 활용한 RESTful 웹서비스의 검색 기법 개발)

  • Cha, Seung-Jun;Choi, Yun-Jeong;Lee, Kyu-Chul
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.100-104
    • /
    • 2010
  • Recently with advent of Web 2.0, RESTful Web Services are becoming increasing trend to emphasize Web as platform. There are already many services and the number of service increases in very fast pace. So it is difficult to find the service what we want by keyword based search. To solve this problem, we developed the search method using sem antic technologies about RESTful Web Services. For that, first we define the system structure and model the description format based on the integrated search system for OpenAPIs, and then we add Semantic Markup (tagging, semantic annotation) on the HTML description pages. Next we extract RDF document from them and store it in service repository. Based on the keywords that are extended by means of ontology, the developed system provides more purified and extended results than similarity-based keyword searching system.

Design and Implementation of Topic Map Generation System based Tag (태그 기반 토픽맵 생성 시스템의 설계 및 구현)

  • Lee, Si-Hwa;Lee, Man-Hyoung;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.730-739
    • /
    • 2010
  • One of core technology in Web 2.0 is tagging, which is applied to multimedia data such as web document of blog, image and video etc widely. But unlike expectation that the tags will be reused in information retrieval and then maximize the retrieval efficiency, unacceptable retrieval results appear owing to toot limitation of tag. In this paper, in the base of preceding research about image retrieval through tag clustering, we design and implement a topic map generation system which is a semantic knowledge system. Finally, tag information in cluster were generated automatically with topics of topic map. The generated topics of topic map are endowed with mean relationship by use of WordNet. Also the topics are endowed with occurrence information suitable for topic pair, and then a topic map with semantic knowledge system can be generated. As the result, the topic map preposed in this paper can be used in not only user's information retrieval demand with semantic navigation but alse convenient and abundant information service.

Semantic Document-Retrieval Based on Markov Logic (마코프 논리 기반의 시맨틱 문서 검색)

  • Hwang, Kyu-Baek;Bong, Seong-Yong;Ku, Hyeon-Seo;Paek, Eun-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.663-667
    • /
    • 2010
  • A simple approach to semantic document-retrieval is to measure document similarity based on the bag-of-words representation, e.g., cosine similarity between two document vectors. However, such a syntactic method hardly considers the semantic similarity between documents, often producing semantically-unsound search results. We circumvent such a problem by combining supervised machine learning techniques with ontology information based on Markov logic. Specifically, Markov logic networks are learned from similarity-tagged documents with an ontology representing the diverse relationship among words. The learned Markov logic networks, the ontology, and the training documents are applied to the semantic document-retrieval task by inferring similarities between a query document and the training documents. Through experimental evaluation on real world question-answering data, the proposed method has been shown to outperform the simple cosine similarity-based approach in terms of retrieval accuracy.