• Title/Summary/Keyword: 시공 단계

Search Result 1,343, Processing Time 0.024 seconds

Development of Intelligent Compaction System for Efficient Quality Control (효율적 품질관리를 위한 지능형 다짐 시스템 개발)

  • Lee, Soomin;Park, Sangil;Lee, Riho;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.751-760
    • /
    • 2018
  • Currently, the quality measurement of the work is carried out by the supervisor's visual inspection, as the workers individually judge the number of resolutions, thickness, speed and vibration. After work, we are conducting follow-up work through traditional spot test, which is less representative. Therefore, it is impossible to check the results of the resolution, and there is always the possibility that problems will arise due to poor construction. This study demonstrates the feasibility of using the continuous compaction strength measurement method by comparing the continuous compaction strength measurement method and the conventional compaction strength measurement method after performing the compaction in the actual field scale in various test conditions. The validity is verified by analyzing the Compaction Meter Value of an Intelligent Compaction roller composed of a Global Positioning System and an accelerometer, Based on the proven results, a full range of quality can be confirmed without a single test. The quality confirmation is visualized in the compaction control program developed in this study, This enables the field manager to perform real-time quality monitoring at the same time as compaction.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

Study on the Effectiveness of Preloading Method on Reinforcement of the Pile Foundation by 3D FEM Analysis (3차원 수치해석을 이용한 공동주택 수직증축용 기초 보강 선재하공법 효과 분석)

  • Wang, Cheng-Can;Han, Jin-Tae;Jang, Young-Eun;Ha, Ik-Soo;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2018
  • In recent years, vertical extension remodeling of apartment building is considered as one of the efficient ways to broaden and enhance the utilization of existing buildings due to the rapid development of population and decrement of land resources. The reinforcement of foundation is of great importance to bearing the additional load caused by the added floors. However, because of the additional load, the carried load by the existing piles would be in excess of its allowable bearing capacity. In this study, a conceptual construction method called preloading method was presented. The preloading method applies force onto the reinforcing pile before vertical extension construction. The purpose of preloading is to transfer partial load applied on the existing piles to reinforcing piles in order to keep each pile not exceeding the allowable capacity and to mobilize resistance of reinforcing pile by developing relative settlement. The feasibility and effect of preloading method was investigated by using finite numerical method. Two simulation models, foundation reinforcement with preloading and without preloading, were developed through PLAXIS 3D program. Numerical results showed that the presented preloading method is capable of sharing partial carried load of existing pile and develops the mobilization of reinforcing pile's frictional resistance.

The Application of CO2 and Hydrometer Sensor for Development of Real Time Measuring Method on CO2 Emission of Construction Equipment (건설장비의 CO2배출량 실시간 측정방법 개발을 위한 CO2 및 유속센서의 활용)

  • Jang, Won-Suk;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • The researches for reduce $CO_2$ are going along animatedly in hole industry area. In construction area, the researches to minimize $CO_2$ emission are progressing variously. The researches to minimize $CO_2$ emission based on $CO_2$ emission. The method measuring $CO_2$ emission are using $CO_2$ emission coefficient on fuel consumption, LCA and an inter-industry relation table. Especially, the methods using the carbon emission coefficient based on fuel consumption are 3 types(Tier1~Tier3) of IPCC. Present, the most using method(Tier1) is using the fuel consumption and the carbon emission coefficient. But because this method do not effect each vehicle distance and driving environment, we can't calculate right $CO_2$ emission. Especially construction project's $CO_2$ emission could be different by project's characteristic. However, we can't apply these difference with present methods. So we need methodology calculating $CO_2$ emission by applying personal project's characteristic and these methodology's most important things is directly measuring $CO_2$ emission of construction equipment which use energy. The object of this study is to develop the $CO_2$ emission calculation methodology which occur in construction process, is to suggest ways to measure in real time $CO_2$ emission from construction equipment.

Development of the Construction Waste Management Performance Evaluation Tool (WMPET): Quantification of Waste Management Performance Factors and Establishment of Waste Management Performance Evaluation Tool (건설현장의 폐기물 관리 성과 평가 툴 개발 : 2단계 - 폐기물 관리 성과 요인의 전량화 및 평가 툴 구축)

  • Kim, Jee-Hye;Shin, Dong-Woo;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.128-136
    • /
    • 2007
  • As the international-level concern has been focused on the environmental sustainability in recent years, many researches emphasized the needs for methods and techniques that would facilitate sustainability assessment at the various project level interfaces. As part of methods and techniques to facilitate sustainability assessment, this paper provides 'Computerized Waste Management Performance Evaluation Tool' for the purpose of assessing the level of management system in dealing with the onsite construction wastes. This tool applies twenty-three waste management performance factors for the purpose of evaluating the level of waste management performance by scoring those factors which were identified in the previous research. These twenty-three factors are classified into four categories: manpower, material, method, and management based on their characteristics. In order to quantitatively evaluate the effectiveness of waste management performance, the levels of actions executed in a site by each waste management performance factor were identified and their weight were analyzed throughout the expert interview and survey. Furthermore, an excel-based computerized tool was developed in order to facilitate the evaluation process. If this tool can be developed in more detail and be used as the method to control waste management at a project level for the future, it is expected that this tool can play an important role in the body of knowledge of environmental management in construction industry.

Comparison of Environmental Impacts of Green and Traditional Buildings using Life Cycle Assessment (전과정평가(LCA)를 이용한 친환경 인증 건축물과 일반 건축물의 환경영향 비교 사례 연구)

  • Hong, Taehoon;Jeong, Kwangbok;Ji, Changyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2014
  • This study aims to understand the environmental impact reduction of green buildings that are certified by Green standard for energy and environmental design(G-SEED). To ensure this end, this study assessed and compared the environmental impacts(global warning, ozone layer depletion, acidification, and eutrophication) of a G-SEED-certified elementary school building(green building) and an uncertified elementary school building(traditional building) using the life cycle assessment methodology. This study considered the environmental impacts from the material manufacturing, material transportation, on-site construction, and operation during 40 years. The comparison of the environmental impact intensity of two buildings showed that the green building generated much more environmental impacts than the traditional building. For example, the global warming potential of the green building was approximately 12.5% higher than of the traditional building since the global warming potential of the green building was 3.751 $t-CO_2eq./m^2$ while that of the traditional building was 3.282 $t-CO_2eq./m^2$. It signifies that the G-SEED doesn't guarantee the reduction of the environmental impacts in terms of four impact categories. Therefore, the G-SEED should be complemented and improved to achieve the environmental impact reduction.

The Stability and Characteristic Analysis of Cut Slope Behavior using Real-time Monitoring System (상시 계측시스템을 이용한 붕괴 절토사면 거동 특성 분석 및 안정성 해석)

  • Baek, Yong;Koo, Ho-Bon;Jang, Ki-Tae;Yoo, Byung-Sun;Bae, Gyu-Jin
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2004
  • The failure of cut slopes frequently occurs particularly during the thawing season and the rain season in summer. This study interpreted data collected from site to which a real-monitoring system was applied in order to analyze the causes of ground behaviors and to forecast future slope failure. As for research methods, this study analyzed the size and mechanism of failure by integrating the results of field surveys and measurements. Furthermore, it analyzed data transmitted by the monitoring system installed in the a result, three times of ground displacement occurred as well as a number of partial tension cracks. The cut slope composed of sandstone and siltstone started its initial behavior as a result of torrential downpour and the loss of support of the substructure. For quantitative analysis of the characteristics of ground behavior, this study measured 5 lateral lines. According to the result of the measurement, displacement happened little in the section to which countermeasure had been applied, but displacement of maximum 400mm happened in the section to which countermeasure had not bee applied. The analysis of data on displacement and rainfall suggested a close relationship between ground behavior and rainfall. According to the result of stability interpretation along with the change of ground saturation, stability rate appeared to be less than 1.0 when ground saturation is over 55%. Although the current trend of ground behavior is at a stable stage falling within the range of tolerance, it is considered necessary to continue monitoring and data analysis because ground displacement is highly possible with the change of temperature during the winter.

The Potential Application of Environmental Psychology and Behavior Studies to Environmental Design (환경심리.행태 연구의 가능성과 한계성)

  • 임승빈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.1
    • /
    • pp.33-43
    • /
    • 1986
  • Environmental designers in Korea have shown interests in Environomental Psychology and Behavior Studies (EPBS) since 1970's. However, many designers, who have expected a great deal of contribution from the EPBS, have disappointed due to their overexpectation and misunderstanding on the EPBS. This study intends to analyse the nature of the EPBS and to investigate the potential contribution of the EPBS to the field of environmental design. The EPBS are able to help designers by providing scentific data in each stage of the design process. Further, most design theories and principles are based on the findings of the EPBS. Thus the development of the EPBS has great potential of contribution to the development of design theories arid principles Due to the scientific nature of the EPBS, however, the EPBS have difficulties in supplying scientific data within relatively short period, which make most designers impatient. Designers should understand the scientific nature of the EPBS and be patient in expecting usable outcome from the EPBS. Further, Designers should not expect the EPBS give them design soultion itself.

  • PDF

Study on Determination of Proper Pillar Width in Road Tunnel Design Stage (도로터널에서 적정한 필라폭 산정에 관한 연구)

  • Yang, Tae-Seon;Kim, Jae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.187-194
    • /
    • 2010
  • As the design of the pillar width (PW) of the parallel tunnels in downtown area, in which are located in plains zone with deep alluvium compared with mountain tunnels, is directly related with pre-compensation payment and costs of the underground area, it has to be planned as to keep minimum distance while securing the stability of the parallel tunnels. Although PW of downtown road tunnel in Korea is standardized as 1.5D(D: diameter of the tunnels), PW sometimes has to be reduced within 1.5D to adjust the tunnel lines to the city plan in the cases of the inlet and outlet of the tunnels. In this paper, the design and the analyses of optimum PW of the NATM type road tunnel in the downtown area are introduced. The relationship among the tunnel line planning and underground compensation fee, and ground characteristics are evaluated. In the determination of PW distance, the numerical analyses of underground road tunnels were performed, including the use of the strength decrease method and strength/stress ratio method. In the cases of inlet and outlet part of the tunnels where the stability of the pillars is poor due to contiguous construction of the parallel tunnels, the reinforcement methods are recommended for securing the stability. Numerical verification was performed for the reinforcement proposed.

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.